633I ОКП

УТВЕРЖДЕНИ

дата

И

Honn.

бл.

No

IHB.

WHB. Nº

Jaam.

дата

подл.

ГРУППА 9 25

УДК

rp: 005/020949 ar 15:01.90

АДБК. 431432.013 ТУ-ЛУ

"20" 12 1989 r.

СОГЛАСОВАНЫ С ОСНОВНЫМ ПОТРЕБИТЕЛЕМ

" 3 " 11 1989r.

С БАЗОВОЙ ОРГАНИЗАЦИЕЙ ПО СТАНДАРТИЗАЦИИ

Форма титульного листа по ГОСТ 2 105 60

" 20 " 12 1989r:

TY II-89

МИКРОСХЕМЫ ИНТЕГРАЛЬНЫЕ KAI5I5XM2 ТЕХНИЧЕСКИЕ УСЛОВИЯ АДБК. 431432.013 ТУ (ВВЕДЕНН ВПЕРВИЕ)

> срок действия с 20.01, 90 г. C° 60 SP

НАСТОЯЩИЕ ТЕХНИЧЕСКИЕ УСЛОВИЯ (ТУ) РАСПРОСТРАНЯЮТСЯ НА ИИКРОСХЕМИ ИНТЕГРАЛЬНИЕ СЕРИЙ КАІБІБ. (ДАЛЕЕ МИКРОСХЕМИ).РАЗРА-БОТАННЫЕ НА ОСНОВЕ БАЗОВОГО КРИСТАЛЛА (БК) КАТБІБХИ2. ИЗГОТАВЛИВАЕНИЕ ДЛЯ НАРОДНОГО ХОЗЯЙСТВА:

КЛИМАТИЧЕСКОЕ ИСПОЛНЕНИЕ УХЛ. КАТЕГОРИЯ 5.1 ПО ГОСТ 15150: МИКРОСХЕМИ, ВЫНУСКАЕНЫЕ ПО НАСТОЯЩИМ ТУ, ДОЛХНИ УДОВЛЕТВОРЯТЬ ВСЕМ ТРЕБОВАНИЯМ ГОСТ 18725 И ТРЕБОВАНИЯМ, УСТАНОВЛЕННЫМ В СООТВЕТСТВУЮЩИХ РАЗДЕЛАХ НАСТОЯЩИХ ТУ:

МИКРОСХЕМИ, ВКЛОЧЕНИИЕ В НАСТОЯЦИЕ ТУ, ПОСТАВЛЯЮТСЯ ТАКХЕ В В БЕСКОРПУСНОМ ИСПОЛНЕНИИ НА ОВЩЕЙ ПЛАСТИНЕ В СООТВЕТСТВИИ С С ТРЕБОВАНИЯМИ РД 11 0723:

ТРЕБОВАНИЯ К МИКРОСХЕМАМ, ПОСТАВЛЯЕМИМ ПО РД II 0723 ИЗЛОХЕНЫ В ПРИЛОХЕНИИ. И В КАРТАХ ЗАКАЗА:

MMEPOGXEMN B KOPNYCE 4223.64-1 FOCT 20.39.405 HE PACEPOCTPAHRETCH.

ТУ ВКЛЮЧАЮТ НАСТОЯЩИЕ ТУ И КАРТИ ЗАКАЗА НА КОНКРЕТНИЕ МИКРООХЕМИ:

I: ОБЩИЕ ПОЛОХЕНИЯ

ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ - ПО ГОСТ 17021. ГОСТ 19480. ОСТ 11 0224:

ПЕРЕЧЕНЬ ССЫЛОЧНЫХ НОРМАТИВНО-ТСХНИЧССКИХ ДОКУМЕНТОВ ПРИВЕДЕН В РАЗДЕЛЕ IO:

1:1: КЛАССИФИКАЦИЯ, УСЛОВНЫЕ ОБОЗНАЧЕНИЯ;

1;1;1; КЛАССИФИКАЦИЯ И СИСТЕМА УСЛОВНЫХ ОБОВНАЧЕНИЙ МИКРО-СХИМ ПО ОСТ 11 073;915;

23	1.6	Contraction of the second second	Manual Carde States	and a state of a state of the	The state of the state			the second second	the second designation of	
	Sal						AD			
LO.		1 Salla	11.201822.91	5- 1153		AUEK.431	[432.0]3) TY	2 05°	
110	1A	VISM AUGT	Nº dokym Nodi	1 Dava						e plant
L VI	X	Разраб	Sancenna Sa	12/12/2	Микроскем		in anna	Aum	Aucm	Aucmab
			Hopceros		the second states of the second states of the second states of the	Contraction of the second s	ioning A		2	63
3	Ca	J.KOHTP	Tempos -Au	1 20.590	in the	151 5 7772				
Ö	(my	H. KOHTP	Hemenmetes Ale	car 1.9.9	Terruma	жие услог	na			
NP.	5	Ymb.	Bapahos ST	Aura		June June	-			
		A Inc. c	n A A A A A	and the second se	to the second second	and the same of the second second			channa	nim still

LII 2: THE BAK YKASAH B TABA IS

III: 3. ТИПЫ (ТИНОВОНИНАЛЫ) ПОСТАВЛЯЕНИХ НИКТОСХЕМ УКАЗАНН

B' TAES. IG.

doma

5

Illadin

SON.

B30M UH6. Nº WH6. N.

dama

Ente

nada

ADEC ON

Nºdok4

ADS

NUC

1:1:4: Цримерн обозначения микросхем при заказе и в конструкторской документации:

MURPOCXENA KAISISXN2-XXX AABK 431432.013 TV

KAPTA SAKASA 3.414.XXX A.

ADEN.431432.013 TY

nuoaban

AUC

TABJMIA IA.	OCHOBHOEIКЛАССИФИКАЦИОННЕПАРАНЕТРИ ВНОРИАЛЬНЫХГОБОЗНАЧЕНИЕ10503НАЧЕНИЕ10503НАЧЕНИЕФУНКЦИО-IКЛИМАТИЧЕСКИХ УСЛОВИЯХФУНКЦИО-IКЛИМАТИЧЕСКИХ УСЛОВИЯХФУНКЦИО-IКЛИМАТИЧЕСКИХ УСЛОВИЯХФАЛЬНОЕIКООПЛЕКТАНАЛЬНОЕIКООПЛЕКТАIКООПЛЕКТАКАЛИЛЕКТАIIКООПЛЕКТАIКООПЛЕКТАIКООПЛЕКТАIIIНАЛЬНОЕIКООПЛЕКТАII<	re	IPOJOALEHUE TAEALIE	УСЛОВНОЕ ІОБОЗНАЧЕНИЕ ГАБА-ІУСЛОВНОЕ ОБОЗНАЧЕНИЕ ІОБОЗНАЧЕНИЕ ІКОЛИЧЕСТВО І ГРУППА І КОД ОБОЗНАЧЕ-ІРИГНОГО ЧЕРТЕХА І КОРПУСА . ЮБРАЗЦОВ ІЭЛЕМЕНТОВ І ТИПОВ І ОКП НИЕ ИИКРОІ І КОРІІУСА . ІВНЕШНЕГО І ВЕНТЕЛЕЙЭ І І СХЕМИ І І І І ВИДА І ВИДА ІВИСКТРИЧЕС-І І І ВИДА ІВИСКТРИЧЕС-І І ІВИСКТРИЧЕС-І І І І ВИДА І ІВИСКТРИЧЕС-І І І І І ВИДА І ІВИСКТРИЧЕС-І І	KAI5I5XM21UN0.073.242 F4 4223.64-I 1UN0.348.071 A2 23550 I 63 3124 3704
	условное обозначе- ние микро схемы	KAI5T5XN2		УСЛОВНОЕ ОБОЗНАЧЕ- НИЕ ИИКРО СХЕМИ	KAI5I5XM2

64 ине * 34 подпо 0212 Внов повозначение 10503начение повозначение 10503начение понструк- порской до- порской до- порской до- порской до- порской до- порской до- порской до- порской до- порской до- порской до- 1 14.408 1 200 1 200	TABJNUA 16.	0503HA ЧЕНИЕ	ДİVI3.480.075 ЭЗİVIЭ.480.1 I5200 I I 63 ЭI24 1 15751 1 15751 1 15751 1 15751 1 15751	AIVI3:480.076 331Y13.480.1 14800 1 1 163 3124 1076 HJ 1 1 15761	.480.077 33 1 13.480. 12100 1 1 163 3124 1077 MJ 1 1 163 3124		
ОДЛ U ОДДа ВЗОМ (И-ЮМ И-О 0.01 U ОДДа ВЗОМ (И-ЮМ И-0 0.01 U 04 Да ВНОЕ 0.01 1 <th>du nodnu dara</th> <th>ИВ] И – 1 И – 1</th> <th>1913.414.407</th> <th>1713.414.408</th> <th></th> <th></th> <th></th>	du nodnu dara	ИВ] И – 1 И – 1	1913.414.407	1713.414.408			
	OGN U DATA BJAMUHBNUHB	БНОЕ ИБ	ЦЛЕР УПРА-1 КЛАВИАТУ-1 16та ВИРА-1 11та ВИРА-1 20тналов 11ий	y	ay 1		

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

2.1. ТРЕБОВАНИЯ К КОНСТРУКЦИИ.

2.1.1. МИКРОСХЕМЫ ИЗГОТАВЛИВАВТСЯ ПО КОМПЛЕКТАМ КОНСТРУК-ТОРСКОЙ ДОКУМЕНТАЦИИ, ОБОЗНАЧЕНИЕ КОТОРЫХ ПРИВЕДЕНЫ В ТАБЛ. Ia, Id. ОБЩИЙ ВИД, ГАБАРИТНЫЕ, УСТАНОВОЧНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ • МИКРОСХЕМ ПРИВЕДЕНЫ НА ЧЕРТЕКЕ ЩИО. 073. 242 ГЧ.

2.1.2. ОПИСАНИЕ ОБРАЗЦОВ ВНЕШНЕГО ВИДА ЩИО.348:071 Д2 ПРИЛАГАЕТСЯ К ТУ.

2.1.3. MACCA MUKPOCXEMU HE BOAEE 5r.

2.1.4. ВЕЛИЧИНА РАСТЯГИВАЮЩЕЙ СИЛН НЕ БОЛЕЕ 2,5 Н (0,25 КГС). МИНИМАЛЬНОЕ РАССТОЯНИЕ ОТ КОРПУСА ДО МЕСТА ИЗГИБА I им, РАДИУС ИЗГИБА 2 С + С (С-ТОЛЩИНА ВЫВОДА).

2.1.5. ТЕМПЕРАТУРА ПАЙКИ (235±5)°С, РАССТОЯНИЕ ОТ КОРПУСА ДО МЕСТА ПАЙКИ 1,5 ММ, ПРОДОЛХИТЕЛЬНСТЬ ПАЙКИ 2+0,5 с.

МИКРОСХЕМЫ ДОЛІНЫ ВЫДЕРІИВАТЬ ВОЗДЕЙСТВИЕ ТЕПЛА, ВОЗНИКШЕГО

ПРИ ТЕМПЕРАТУРЕ ПАЙКИ (260±5)°С.

ЧИСЛО ДОПУСКАЕМЫХ ПЕРЕПАЕК ВЫВОДОВ МИКРОСХЕМ ПРИ ПРОВЕДЕНИИ МОНТАХНЫХ (СБОРОЧНЫХ) ОПЕРАЦИЙ) - Ф.

POPMO SO NO POCT 2106-68

АЛБК. 431432.013 ТУ

5

appmam

2:1:6: ЭЛЕКТРИЧЕСКИЕ СХЕМЫ С НАЗНАЧЕНИЕМ И НУМЕРАЦИЕЙ ВЫВОДОВ ПРИВЕДЕНЫ НА ЧЕРТЕХАХ, ОБОЗНАЧЕНИЯ КОТОРЫХ УКАЗАНЫ В ТАБЛ.18, 16.

нумерация и назначение внешних выводов микросхем должны соответствовать электрической схеме, прилагаемой к карте заказа: 2.1.7. микросхемы должны быть трудногорочими. аварийный электрический режим $V_{ZH} > V_{CC} + 0.3$ В. 2.2. ТРЕБОВАНИЯ К ЭЛЕКТРИЧЕСКИМ ПАРАМЕТРАМ И РЕЖИМАМ

2.2.1. ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ МИКРОСХЕМ ПРИВЕДЕНЫ В ТАБЛ.2. ДОПОЛНИТЕЛЬНЫЕ ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ МИКРОСХЕМ, РАЗРАБОТАННЫХ НА ОСНОВЕ БК ПРИВЕДЕНЫ В КАРТЕ ЗАКАЗА.

МИКРОСХЕМЫ ДОЛІНЫ ВЫПОЛНЯТЬ ОПЕРАЦИИ, ПРИВЕДЕННЫЕ В КАРТЕ ЗАКАЗА, В РЕХИМАХ И УСЛОВИЯХ, УКАЗАННЫХ В НАСТОЯЩИХ ТУ, ПРИ ЭТОМ ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ МИКРОСХЕМ ДОЛІНЫ ОСТАВАТЬСЯ В ПРЕ-ДЕЛАХ НОРМ, УСТАНОВЛЕННЫХ В ТАБЛ.2 ТУ И КАРТЕ ЗАКАЗА.

2.2.2. ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ МИКРОСХЕМ В ТЕЧЕНИЕ МИНИМАЛЬНОЙ НАРАБОТКИ В ПРЕДЕЛАХ ВРЕМЕНИ, РАВНОГО СРОКУ СОХРАНЯЕМОСТИ, ПРИ-ВЕДЕНЫ В ТАБЛ.2.

UCT. NºODKYM. NOON.

TO FOCT 2.105-68

АЛБК. 431432.013 ТУ

ME

6

DODMOM.

ДОПОЛНИТЕЛЬНЫЕ ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ МИКРОСХЕМ, РАЗРАБОТАН-НЫХ НА ОСНОВЕ БК, ПРИВЕДЕНЫ В КАРТЕ ЗАКАЗА:

2:2:3: ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ МИКРОСХЕМ В ТЕЧЕНИЕ СРОКА СОХРАНЯЕМОСТИ ПРИВЕДЕНЫ В ТАБЛ.2.

ДОПОЛНИТЕЛЬНИЕ ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ МИКРОСХЕМ, РАЗРАБОТАННЫХ НА ОСНОВЕ БК, ПРИВЕДЕНЫ В КАРТЕ ЗАКАЗА:

2.2.4. ЗНАЧЕНИЯ ПРЕДЕЛЬНО-ДОПУСТИМЫХ ЭЛЕКТРИЧЕСКИХ РЕХИМОВ ЭКСПЛУАТАЦИИ В ДИАПАЗОНЕ ТЕМПЕРАТУРЫ СРЕДЫ ПРИВЕДЕНЫ В ТАБЛ.З. ДОПОЛНИТЕЛЬНЫЕ ЗНАЧЕНИЯ ПРЕДЕЛЬНО ДОПУСТИМЫХ ЭЛЕКТРИЧЕСКИХ РЕХИЙОВ ЭКСПЛУАТАЦИИ ДЛЯ КОНКРЕТНЫХ МИКРОСХЕМ ПРИВЕДЕНЫ В

KAPTE SAKASA:

НИЕ ПИТАНИЯ

ISM JUCT. Nº OOKYM. NOON. Dan

PODMO 50 NO FOCT 2.106-68

2:2.5: номинальное значение напряжения питания микросхем *Vcc* = 5 в.

ДОПУСТИМОЕ ОТКЛОНЕНИЕ ЗНАЧЕНИЯ НАПРЯЖЕНИЯ ПИТАНИЯ ОТ НОМИНАЛЬНОГО ±10 %.

2:2:6: ПОРЯДОК ПОДАЧИ НА МИКРОСХЕМУ НАПРЯТЕНИЕ ПИТАНИЯ И ВХОДНЫХ СИГНАЛОВ:

ПРИ ВКЛЮЧЕНИИ: ПОДАЕТСЯ НАПРЯХЕНИЕ ПИТАНИЯ; ПОДАЮТСЯ ВХОДНЫЕ СИГНАЛЫ:

ПРИ ВЫКЛОЧЕНИИ: СНИМАВТСЯ ВХОДНЫЕ СИГНАЛЫ; СНИМАЕТСЯ НАПРЯТЕ-

АДБК. 431432.013 ТУ

NUCT

adoman

2.3.ТРЕБОВАНИЯ К УСТОЙЧИВОСТИ ПРИ МЕХАНИЧЕСКИХ ВОЗДЕЙСТВИЯХ МЕХАНИЧЕСКИЕ ВОЗДЕЙСТВИЯ ПО – ГОСТ 18725 В ТОМ ЧИСЛЕ:

линейное ускорение 5000 (500) M/C² (g):

2:4: ТРЕБОВАНИЯ К УСТОЙЧИВОСТИ ПРИ КЛИМАТИЧЕСКИХ ВОЗДЕЙСТВИЯХ 2:4:1: КЛИМАТИЧЕСКИЕ ВОЗДЕЙСТВИЯ – ПО ГОСТ 18725 В ТОМ ЧИСЛЕ: ПОНИЖЕННАЯ РАБОЧАЯ ТЕМПЕРАТУРА СРЕДЫ – 10°С;

ПОВИШЕННАЯ РАБОЧАЯ ТЕМПЕРАТУРА СРЕДИ 70°С; ПОВИШЕННАЯ ПРЕДЕЛЬНАЯ ТЕМПЕРАТУРА СРЕДИ 85°С; ИЗМЕНЕНИЕ ТЕМПЕРАТУРЫ СРЕДИ ОТ МИНУС 60°С ДО 85°С.

2:5: ТРЕБОВАНИЯ К НАДЕХНОСТИ 2:5:1: НАРАБОТКА МИКРОСХЕМ 50000ч, А В ОБЛЕГЧЕННОМ РЕХИМЕ $Vcc = 5 B \pm 5 \%$. Выходных токах Zo не более 50 % от

ЗНАЧЕНИЯ, УСТАНОВЛЕННОГО В ТАБЛ.4 - 60000ч. 2.5.2. ИНТЕНСИВНОСТЬ ОТКАЗОВ В ТЕЧЕНИЕ НАРАБОТКИ НЕ

2.105-58

UHB!

EOJEE I.IO-6 I/4:

2:5:3: ГАММА ПРОЦЕНТНИЙ СРОК СОХРАНЯЕМОСТИ 10 ЛЕТ.

AUCT

8

ODDMam

ТАБЛИЦА 2. Sec.

and a second

НАИМЕНОВАНИЕ ПАРАМЕТРА, ЕДИНИЦА ИЗМЕРЕНИЯ, РЕХИМ ИЗМЕРЕНИЯ	I OBOSHAYE- I HNÊ	I HE I HE I MEHEE I БОЛІ	 1 *C 1 GE1
при Vcc = 5 B±5%	! 1 <i>Vok</i> 1	$\frac{1}{1} - \frac{1}{1} 0.5$	125±10 1 1 -10 1 1 70 1
Ток = 1.6 мА выходное напрядение высокого уровня, в при Vcc = 5 В± 5% Дон = 0,4 мА	і 1 <i>Vон</i>	1 1 1 4,0 1 - 1 1	125±10 1
ток потребления, ид при <i>Dec</i> = 5 B ± 5%	1 1 Icc	$\begin{array}{ccc} 1 & 1 & 0, \\ 1 & - & 1 & I, \\ 1 & - & 1 & \end{array}$	8 125±10 1 0 1 -10 1 1 70 1
ток утечки на входе низкого и высокого уровня, ика при Vcc = 5 в ± 5%	1 1 <i>I</i> л <i>I</i> н	i - 1	<u>125±10</u> ! !-10 1 ! 70 1
виходной ток в состоя- нии "виключено" при напряжении высокого и низкого уровня, мкл при <i>Vcc</i> = 58 ± 5%	1 <i>IOZH</i> <i>IOZ</i> A 		1 1 125±10 1 0 1-10 1 1 70 1 1 1
вреня задерики, но при Исс = 5 В ± 5%	¦ td		.125±10 11
B KAPTE SAF B KAPTE S	В ТАВЛ:5. НЕ ЗНАЧЕНИЯ (АЗА: ВАКАЗА МОГУТ	ВРЕМЕНИ ЗАДЕРІ ВНТЬ УСТАНОВЈ	кки приводятся
		адбк. 431	432.013 ТУ •
Usm Juct Nookym. 10001. 11ato Dopma 50 no 10ct 2.100		•	Φορπα

-

з. контроль качества

3.1. ТРЕБОВАНИЯ ПО ОБЕСПЕЧЕНИЮ И КОНТРОЛЮ КАЧЕСТВА В ПРО-ЦЕССЕ ПРОИЗВОДСТВА - ПО ГОСТ 18725.

ОТБРАКОВОЧНЫЕ ИСПЫТАНИЯ ПО ГОСТ 18725, В СООТВЕТСТВИИ

С ТАБЛ:4:

Nº OOKYM.

nodn.

roc

T 2.105-68

з.2. ПАВИЛА ПРИЕМКИ

3.2.1. ПРАВИЛА ПРИЕМКИ – ПО ГОСТ 18725 И ТРЕБОВАНИЯМ, ИЗЛОЖЕННЫМ В НАСТОЯЩЕМ ПУНКТЕ.

3.2.2. ИСПЫТАНИЯ ПО ПРОВЕРКЕ ПРОЧНОСТИ ВНЕШНИХ ВНВОДОВ МИКРО-СХЕМ ГРУПП К-7, П-4 НЕ ПРОВОДЯТ:

3:2:3: ИСПЫТАНИЯ НА ГЕРМЕТИЧНОСТЬ ГРУПП К-7, П-4 И ИСПЫТАНИЯ НА ВИБРОПРОЧНОСТЬ И ВИБРОУСТОЙЧИВОСТЬ ГРУПП К-9, П-5 МИКРОСХЕМ НЕ ПРОВОДЯТ: ВМЕСТО ИСПЫТАНИЙ НА ГЕРМЕТИЧНОСТЬ ПРОВОДЯТ ИСПЫТАНИЕ НА ВОЗДЕЙСТВИЕ ПОВЫШЕННОЙ ВЛАЖНОСТИ ВОЗДУХА (КРАТКО-ВРЕМЕННОЕ):

MIC

10

appmam

3.2.4. ДЛЯ ИСПЫТАНИЙ ПО ГРУППЕ С-І ПРИЕМОЧНЫЙ УРОВЕНЬ ДЕФЕКТ-

HOCTH 2,5 %.

3:2:5: ДЛЯ ИСПЫТАНИЙ ПО ГРУППЕ С-З ПРИЕМОЧНЫЙ УРОВЕНЬ ДЕФЕКТ-НОСТИ 0,1 %:

3.2.6. ОБЪЕМ ВНБОРКИ ДЛЯ ГРУППЫ ИСПЫТАНИЙ К-II П = I9 ШТ. ПРИЕМОЧНОЕ ЧИСЛО С - 0.

Э.2.7. ФУНКЦИОНАЛЬНЫЙ КОНТРОЛЬ ПРОВОДЯТ ПО МЕТОДУ, УКАЗА-ННОМУ В ТУ П.Э.Э.4.2.

3.2.8. ВРЕМЯ ВИДЕРІКИ МИКРОСХЕМ ПЕРЕД ПРИЕМО-СДАТОЧНЫМИ

ИСПЫТАНИЯМИ 24 ЧАС.

зізі методы контроля

3.3.1. МЕТОДЫ КОНТРОЛЯ-ПО ГОСТ 18725 И ОСТ II 073:013.

зізіг. ОБЩИЕ НОЛОХЕНИЯ

Э.З.2.1. СХЕМЫ ВКЛЮЧЕНИЯ МИКРОСХЕМ ПРИ ИСПЫТАНИЯХ, ПРОВОДИМЫХ

ПОД ЭЛЕКТРИЧЕСКОЙ НАГРУЗКОЙ, ЭЛЕКТРИЧЕСКИЕ РЕХИМЫ ВИДЕРХКИ В

ПРОЦЕССЕ ИСПЫТАНИЙ И ПАРАМЕТРЫ - КРИТЕРИИ КОНТРОЛЯ ПРИВЕДЕНЫ НА

PMC.I,2,10,11.

ANKUM (MOA)

PORMA 50 NO FOCT 2.106-68

СХЕМЫ ИЗМЕРЕНИЯ ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ, СПОСОБЫ КОНТРОЛЯ

ЭЛЕКТРИЧЕСКИХ РЕХИМОВ ИЗМЕРЕНИЯ ПРИВЕДЕНИ НА РИС. 3-7:

АЛБК.431432.013 ТУ

	ІБУКВЕННОВІ ІОБОЗНАЧЕ-І ІНИЕ І	HOPI	IA	I INPNMEYAHNE I
	1	HE MEHEE	HE I BOJEE I	
НАПРЯХЕНИЕ ПИТАНИЯ, В	Vec.	4,75	 5,25 	((
ВХОДНОЕ НАПРЯХЕНИЕ НИЗКОГО УРОВНЯ, В	1 1 1 VZL 1 1 1	0,2	1 ! !	1 1 1 1
ВХОДНОЕ НАПРЯХЕНИЕ ВИСОКОГО УРОВНЯ, В	1 VIH 1		1 5,5	
			Para P	A State of the second sec

<u>7</u>7

12

PODMAM A

yon noon u dara

on. U dara Baam.unby.Unb

000

UHB.

SUSM JUCT NOOKCIM.

PODMA

5a 10

Noon. Data

FOCT 2.105-58

.90

3.3.2.2. ПАРАМЕТРЫ ДЛЯ ВСЕХ ВИДОВ ИСПЫТАНИЙ, ИХ НОРМЫ, УСЛОВИЯ, РЕХИМЫ И МЕТОДЫ ИЗМЕРЕНИЯ ЭТИХ ПАРАМЕТРОВ ПРИВЕДЕНЫ В ТАБЛ.5. И КАРТАХ ЗАКАЗА.

СОСТАВ ПАРАМЕТРОВ ПО КАЖДОМУ ВИДУ ИСПЫТАНИЙ ПРИВЕДЕН В ТАБЛ.6 . И В КАРТАХ ЗАКАЗА.

ДОВЕРИТЕЛЬНАЯ ВЕРОЯТНОСТЬ ПОГРЕШНОСТИ ИЗМЕРЕНИЯ 0,997. 3.3.2.3. ПРИ ИСПИТАНИЯХ НА ВОЗДЕЙСТВИЕ ПОВИШЕННОЙ И ПОНИЖЕН-НОЙ РАБОЧЕЙ ТЕМПЕРАТУРЫ СРЕДЫ, АТМОСФЕРНОГО ПОНИЖЕННОГО ДАВЛЕНИЯ, ПОВИШЕННОЙ ВЛАЖНОСТИ ВОЗДУХА (КРАТКОВРЕМЕННОЕ И ДЛИТЕЛЬНОЕ), ЛИНЕЙНОГО УСКОРЕНИЯ, ОДИНОЧНЫХ И МНОГОКРАТНЫХ УДАРОВ, БЕЗОТКАЗ-НОСТЬ И ДОЛГОВЕЧНОСТЬ УСТАНОВКУ И КРЕПЛЕНИЕ МИКРОСХЕМ ПРОИЗВОДЯТ В СООТВЕТСТВИИ С РИС.8, ФОРМОВКА ВИВОДОВ В СООТВЕТСТВИИ С РИС.9: ИСПИТАНИЕ НА ВОЗДЕЙСТВИЕ ПОВЫШЕННОЙ И ПОНИЖЕННОЙ ТЕМПЕРАТУРИ СРЕДЫ, БЕЗОТКАЗНОСТЬ И ДОЛГОВЕЧНОСТЬ ДОПУСКАЕТСЯ ПРОВОДИТЬ БЕЗ РАСПАЙКИ С ИСПОЛЬЗОВАНИЕМ КОНТАКТИРУДЩИХ УСТРОЙСТВ, ПРИ ЭТОМ ВИВОДИ МИКРОСХЕМ НЕ ФОРМУВТСЯ:

ПРИ ИСПЫТАНИЯХ НА ОДИНОЧНЫЕ И МНОГОКРАТНЫЕ УДАРЫ, ЛИНЕЙНЫЕ НАГРУЗКИ НАПРАВЛЕНИЯ ВОЗДЕЙСТВИЯ УСКОРЕНИЯ В СООТВЕТСТВИИ С РИС. 8

TOCT 2.106-68

АДБК.431432.013 ТУ

IUC.

13

DODMami

ПРИ ИСПЫТАНИЯХ НА ВОЗДЕЙСТВИЕ ИЗМЕНЕНИЯ ТЕМПЕРАТУРЫ СРЕДЫ АТМОСФЕРНОГО ПОВЫШЕННОГО ДАВЛЕНИЯ МИКРОСХЕМЫ ПОМЕЩАЮТ В КАМЕРЫ ТАК, ЧТОБЫ ОНИ НЕ КАСАЛИСЬ ДРУГ ДРУГА:

з.з.з. проверка конструкции

• 3.3.3.1. ПРОВЕРКУ ОБЦЕГО ВИДА, ГАБАРИТНЫХ, УСТАНОВОЧНЫХ И ПРИСОЕДИНИТЕЛЬНЫХ РАЗМЕРОВ ПРОВОДЯТ ПО МЕТОДУ 404-1

ОСТ II 073:013 НА СООТВЕТСТВИЕ ЩИО:073:242 ГЧ:

ПОГРЕШНОСТЬ ИЗМЕРЕНИЯ НЕ ВОЛЕЕ ± 0,05 ММ.

3:3:3:2: ПРОВЕРКУ ВНЕШНЕГО ВИДА ПРОВОДЯТ ПО МЕТОДУ 405-1:3 ОСТ 11 073:013: ПРОВЕРКУ ЭЛЕМЕНТОВ КОНСТРУКЦИИ ПРОВОДЯТ ПРИ УВЕЛИЧЕНИИ 46^{*}:

3.3.3.3. ПРОВЕРКУ МАССЫ МИКРОСХЕМ ПРОВОДЯТ ПО МЕТОДУ 406-1 ОСТ II 073.013.

3:3:3:4: ПРОВЕРКУ ПРОЧНОСТИ ВНЕШНИХ ВЫВОДОВ НА РАСТЯХЕНИЕ ПРОВОДЯТ ПО МЕТОДУ 109-1 ОСТ 11 073:013, РАСТЯГИВАЮЩАЯ СИЛА

2,5 H (0,25 KFC);

Nedokym. Nod

50. NO FOCT 2.105-68

AM

UHB.

ПРОВЕРКУ ПРОЧНОСТИ ВНЕШНИХ ВЫВОДОВ НА ИЗГИЕ ПРОВОДЯТ ПО МЕТО-ДУ 110-3 ОСТ II 073:013, РАДИУС ИЗГИБА 2C+C (С-ТОЛЩИНА ВЫВОДА) 3:3:3:5: ПРОВЕРКУ ВЫВОДОВ НА СПОСОБНОСТЬ К ПАЙКЕ ПРОВОДЯТ ПО МЕТОДУ 402-I ОСТ II 073:013: .

АДБК. 431432.013 ТУ

IUC.

14

anoman

УСКОРЕННОЕ СТАРЕНИЕ ПО МЕТОДУ 3.

3.3.3.6. ПРОВЕРКУ ВИВОДОВ НА ТЕПЛОСТОЙКОСТЬ ПРИ ПАЙКЕ ПРОВО-

ДЯТ ПО МЕТОДУ 403-1 ОСТ II 073:013

Э.Э.Э.7. ПРОВЕРКУ КОРРОЗИОННОЙ СТОЙКОСТИ МИКРОСХЕМ ПРОВОДЯТ

ПО МЕТОДУ 208-2 ОСТ 11 073.013 БЕЗ ПОКРЫТИЯ ЛАКОМ ПРИ

ТЕМПЕРАТУРЕ 40°С БЕЗ ЭЛЕКТРИЧЕСКОЙ НАГРУЗКИ.

Э.Э.Э.З.В. ПРОВЕРКУ НУМЕРАЦИИ ВНЕШНИХ ВИВОДОВ МИКРОСХЕМ СОВ- * МЕЩАЮТ С ПРОВЕРКОЙ ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ.

3:3:3:9. UCHNTAHUE MUKPOCXEM HA CHOCOFHOCTE BUSNBATE FOPEHUE NPOBOART NO METOAY 410-1 OCT 11 073:013.

СХЕМА ВКЛЮЧЕНИЯ ПРИВЕДЕНА НА РИС. 10.

3.3.3.10: ИСПЫТАНИЕ МИКРОСХЕМ НА ГОРВЧЕСТЬ ПРОВОДЯТ ПО МЕТОДУ 410-2 ОСТ 11 073.013. ВРЕМЯ ПРИЛОЖЕНИЯ ПЛАМЕНИ ГОРЕЛКИ

ILIC.

15

АЛБК. 431432.013 ТУ

к миросхеме зо с.

BMJUCT Nº ODKYM.

10.50

FOCT 2105-58

3.3.4. ПРОВЕРКА ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ

3.3.4.1. ИЗМЕРЕНИЕ ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ ПРОВОДЯТ ПО МЕТОДУ 500-1 ОСТ 11 073.013.

3.3.4.2. ИЗМЕРЕНИЕ ВЫХОДНОГО НАПРЯЖЕНИЯ НИЗКОГО УРОВНЯ *Гол* И ВЫХОДНОГО НАПРЯЖЕНИЯ ВЫСОКОГО УРОВНЯ *Год* МИКРОСХЕМЫ ПРОВОДЯТ ПО ГОСТ 18683.1 В РЕЖИМАХ И УСЛОВИЯХ, УКАЗАННЫХ В ТАБЛ.5, ПО СХЕМЕ ИЗМЕРЕНИЯ, ПРИВЕДЕННОЙ НА РИС.3 СОГЛАСНО ТЕСТАМ, ПРИВЕДЕННЫМ В КАРТЕ ЗАКАЗА.

при этом, проводится функциональный контроль до теста, указанного в карте заказа, после чего проводится измерение Vol. .Voh. при наличии на выводах резисторов, отключение резисторов от измеряемого вывода проводится только в момент измерения Vol. . Voh :

3.3.4.3. ФУНКЦИОНАЛЬНЫЙ КОНТРОЛЬ ОСУЩЕСТВЛЯЕТСЯ МЕТОДОМ ВИ-ПОЛНЕНИЯ МИКРОСХЕМОЙ ОПРЕДЕЛЕННЫХ ВХОДНЫХ КОМБИНАЦИЙ И ИЗМЕРЕНИЯ ПРИ ЭТОМ НА СООТВЕТСТВУДЩИХ ВИВОДАХ *Vok* и *Voh* и измерение проводится по методу 3.1 ост 11 073.944 В РЕХИМАХ И УСЛОВИЯХ, УКАЗАННЫХ В ТАБЛ.5 ПО СХЕМЕ ИЗМЕРЕНИЯ, ПРИВЕДЕННОЙ НА РИС.6, СОГЛАСНО ТЕСТАМ, ПРИВЕДЕННЫМ В КАРТЕ ЗАКАЗА. В СЛУЧАЕ ИСПОЛЬЗОВАНИЯ ВНЕШНИХ ВИВОДОВ В РЕХИМЕ "ВХОД-ВЫХОД" С АЛБК. 431432.013 ТУ

JUCT. NºOOKYM. 1000. Man

50L NO FOCT 2.105-58

16

appmam

третьим состоянием, что указывается в карте заказа, между этими выводами и V2c может подключаться резистор R = 3.3 ком ± 10%: 3.3.4.4: измерение тока потребления V2c проводят по гост 18683.1 В режимах и условиях, указанных в табл.5, по схеме измерения, приведенной на рис.4 согласно тестам приведенным в карте заказа.

при этом проводится функциональный контроль до теста, указанного в карте заказа: при наличии резисторов, подключенных к выводам микросхемы, резисторы отключаются только от выводов находящихся в режиме активного выхода и указанных в карте заказа: затем проводится измерение тока потребления *Icc*: 3:3:4:5: измерение входного тока утечки при напряжениях низкого и высокого уровней *IAIA*, *IAIH*. по каждому входу проводят по методу 4:10 ост 11 073:944 в

в режимах и условиях, указанных в табл. 5, по схеме измерения, приведенной на рис. 5, согласно тестам, приведенным в карте заказа. 3.3.4.6. измерение выходного тока низкого уровня и выходного тока высокого уровня Iozl, IozH в состоянии "выключено" проводят по методу 4.13 ост 11 073.944 в режимах и условиях, указанных в табл. 5 по схеме измерения, приведенной на рис. 5,

TOCT 2.106-68

АЛБК. 431432.013 ТУ

IUC

СОГЛАСНО ТЕСТАМ ПРИВЕДЕННЫМ В КАРТЕ ЗАКАЗА.

3:3:4:7: ИЗМЕРЕНИЕ ВРЕМЕНИ ЗАДЕРЖКИ Zd ПРОВОДЯТ ПО ГОСТ 18683:2 В РЕЖИМАХ И УСЛОВИЯХ, УКАЗАННЫХ В ТАБЛ:5, ПО СХЕМЕ ИЗМЕРЕНИЯ, ПРИВЕДЕННОЙ НА РИС.7:

. 3:3:4:8: МЕТОДИКА КОНТРОЛЯ ДИНАМИЧЕСКИХ ПАРАМЕТРОВ, НОРМЫ И РЕ-

з:з:5: проверка устойчивости при механических воздействиях

3.3.5.1. ИСПЫТАНИЕ НА ВОЗДЕЙСТВИЕ ОДИНОЧНЫХ УДАРОВ ПРОВОДЯТ

по методу 106-1 ост 11 073.013 по 111 степени лесткости.

Э.Э.5.2. ИСПИТАНИЯ Н ВОЗДЕЙСТВИЕ МНОГОКРАТНЫХ УДАРОВ ПРОВОДЯТ

по методу 104-1 ост 11 073:013 по 1у степени хесткости:

3.3.5.3. ИСПИТАНИЕ НА ВОЗДЕЙСТВИЕ ЛИНЕЙНЫХ НАГРУЗОК ПРОВОДЯТ

ПО МЕТОДУ 107-1 ОСТ II 073.013 ПО УІ СТЕПЕНИ ХЕСТКОСТИ:

05-68

18

Oppmam.

3.3.6. ПРОВЕРКА УСТОИЧИВОСТИ ПРИ

климатических воздействиях

3.3.6.1. ИСПИТАНИЕ НА ВОЗДЕЙСТВИЕ ПРИ ПОНИЖЕННОЙ РАБОЧЕЙ ТЕМПЕРАТУРЫ СРЕДЫ ПРОВОДЯТ ПО МЕТОДУ 203-1 ОСТ II 073.013. Э.3.6.2. ИСПЫТАНИЯ НА ВОЗДЕЙСТВИЕ ПРИ ПОВЫШЕННОЙ РАБОЧЕЙ ТЕМПЕРА-ТУРЫ СРЕДЫ ПРОВОДЯТ ПО МЕТОДУ 201-1.1 ИЛИ 201-2.1 ОСТ II 073.013. СХЕМА ВКЛЮЧЕНИЯ ПРИ ИСПЫТАНИИ ПРИВЕДЕНА НА РИС.2.

3.3.6.3. ИСПЫТАНИЯ НА ВОЗДЕЙСТВИЕ К ИЗМЕНЕНИЮ ТЕМПЕРАТУРЫ СРЕДЫ ПРОВОДЯТ ПО МЕТОДУ 205-1 ОСТ II 073.013.

количество циклов - 5.

ИСПЫТАНИЕ НА ПОНИЖЕННУЮ ПРЕДЕЛЬНУЮ ТЕМПЕРАТУРУ СРЕДЫ САМОС-ТОЯТЕЛЬНО НЕ ПРОВОДЯТ. А СОВМЕЩАЮТ С ИСПЫТАНИЕМ НА ВОЗДЕЙСТВИЕ ИЗМЕНЕНИЯ ТЕМПЕРАТУРЫ СРЕДЫ.

3.3.6.4. ИСПИТАНИЯ НА ВОЗДЕЙСТВИЕ АТМОСФЕРНОГО ПОНИЖЕННОГО ДАВЛЕНИЯ ПРОВОДЯТ ПО МЕТОДУ 209-1 ОСТ 11 073.013.

СХЕМА ВКЛЮЧЕНИЯ ПРИ ИСПЫТАНИИ ПРИВЕДЕНА НА РИС. II.

3.3.6.5. ИСПИТАНИЯ НА ВОЗДЕЙСТВИЕ ПОВИШЕННОЙ ВЛАХНОСТИ

воздуха (длительное) проводят по методу 207-2 ост II 073.013. по XI степени жестности

Э.Э.6.6. ИСПЫТАНИЯ НА ВОЗДЕЙСТВИЕ АТМОСФЕРНОГО ПОВИШЕННОГО ДА-

ВЛЕНИЯ ПРОВОДЯТ ПО МЕТОДУ 210-1 ОСТ 11 073.013.

2.105-68

АДЕК. 431432.013 ТУ

UC

19

anomam.

3.3.7. ПРОВЕРКА НАДЕХНОСТИ

3.3.7.1. ИСПИТАНИЕ НА БЕЗОТКАЗНОСТЬ ПРОВОДЯТ ПО МЕТОДУ 700-1 ОСТ 11 073.013 ПРИ ТЕМПЕРАТУРЕ 70°С.

СХЕМА ВКЛЮЧЕНИЯ ПРИ ИСПЫТАНИИ ПРИВЕДЕНА НА РИС.2.

3.3.7.2. ИСПИТАНИЯ НА ДОЛГОВЕЧНОСТЬ ПО ГРУППЕ К-11 ПРОВОДЯТ
ПО МЕТОДУ 700-2.2 ОСТ 11 073.013. КОНТРОЛЬ ПАРАМЕТРОВ-КРИТЕРИЕВ ГОДНОСТИ ПРОВОДЯТ ПОСЛЕ 96, 168, 240, 500, 1000, 2000, 3000,
4000, 5000, 7500, 10000, 15000, 20000, 25000, 30000 И ДАЛЕЕ ЧЕРЕЗ
100004.ИСПИТАНИЙ.СХЕМА ВКЛЮЧЕНИЯ ПРИ ИСПИТАНИИ ПРИВЕДЕНА НА РИС.2
3.3.7.3. ИСПИТАНИЕ НА ДОЛГОВЕЧНОСТЬ ПО ГРУППЕ П-6 ПРОВОДЯТ
НО МЕТОДУ 700-2.1 ОСТ 11.073.013 ПРИ ТЕМПЕРАТУРЕ 70 С В
ТЕЧЕНИИ 1000 Ч. СХЕМА ВКЛЮЧЕНИЯ ПРИ ИСПИТАНИИ ПРИВЕДЕНА НА РИС.2.
3.3.7.4. ИСПИТАНИЯ НА СОХРАНЯЕМОСТЬ ПРОВОДЯТ ПО ГОСТ 21493.
3.3.8. П Р О В Е Р К А. М А Р К И Р О В К И

3.3.8.1. ПРОВЕРКУ КАЧЕСТВА И СОДЕРХАНИЕ МАРКИРОВКИ ПРОВОДЯТ ПО МЕТОДУ 407-I ОСТ 11 073.013.

3.3.8.2. ПРИ ПРОВЕРКЕ СТОЙКОСТИ МАРКИРОВКИ К ВОЗДЕЙСТВИЮ РАСТВОРИТЕЛЕЙ ПРИМЕНЯТЬ СПИРТО-БЕНЗИНОВУЮ СМЕСЬ (I:I) ГОСТ 25486.

50 NO FOCT 2.105-68

АДБК. 431432.013 ТУ

NUC

20

DINOM

ТАБЛИЦА 4

ВИД ИСПЫТАНИЙ	ІМЕТОД И УСЛОВИЯ ПРОВЕ-ІПРИМЕЧАН ІДЕНИЯ ИСПЫТАНИЙ ПО І	ИE
І. ВИЗУАЛЬНИЙ КОНТРОЛЬ КРИСТАЛЛОВ;	<u>10СТ II 073.013</u> 1 1405-1.1. УВЕЛИЧЕНИЕ 801	
СБОРКИ ПЕРЕД ГЕРМЕТИЗАЦІ 2. ТЕРМООБРАБОТКА : ДЛЯ СТАБІ ЦИИ ПАРАМЕТРОВ :	ИЕЙ 1405-І.І. УВЕЛИЧЕНИЕ 251 ИЛИЗА-І І	
ПЕРЕД ГЕРМЕТИЗАЦИЕЙ ПОСЛЕ ГЕРМЕТИЗАЦИИ Э.ИСПИТАНИЕ НА ВОЗДЕЙСТВИИ	! 48 Ч. 150°С ! ! 24 Ч. 70°С ! E IOT MUHYC 60°С ДО 85°С, !	
ИЗМЕНЕНИЯ ТЕМПЕРАТУРЫ СІ	РЕДИ ІНА КАХДОЙ ТЕМПЕРАТУРЕ І І IO ЦИКЛОВ І	
 4. ИЗМЕРЕНИЕ ЭЛЕКТРИЧЕСКИ ПАРАМЕТРОВ 5. ЭЛЕКТРОТЕРМОТРЕНИРОВКА 	1 500-1	
 6. ЭЛЕКТРИЧЕСКИЕ ИСПЫТАНИЯ 6.1. ПРОВЕРКА СТАТИЧЕСКИХ ПАРАМЕТРОВ ПРИ: НОРМАЛЬНЫХ КЛИМАТИЧЕСКИ 		
УСЛОВИЯХ ПОНИХЕННОЙ РАБОЧЕЙ ТЕМІ	I 500-I I NEPA-I I	
ТУРЕ СРЕДН ПОВИШЕННОЙ РАБОЧЕЙ, ТЕМІ РАТУРЕ СРЕДЫ	201-1.1	
6.2. ПРОВЕРКА ДИНАМИЧЕСКИХ МЕТРОВ ПРИ НОРМАЛЬНЫХ КЛИМАТИЧЕСКИХ УСЛОВИЯ) 6.3. ФУНКЦИОНАЛЬНЫЙ КОНТРО	Х I 500-I I	
ПРИ ПОВЫШЕННОЙ РАБОЧЕЙ ПЕРАТУРЕ СРЕДЫ И НАИХУ СОЧЕТАНИЯХ ПИТАЮЩИХ НА	удших і 201-1.1. і	
ний. 7. контроль внешнего вида	405-1.3	18 19
ПОСЛЕДОВАТЕ 2: ДОПУСКАЕТСЯ	ВАНИВ С ГПП ДОПУСКАЕТСЯ ИЗМЕНЕНИЕ ЕЛЬНОСТИ ИСПНТАНИЙ. Я ПО СОГЛАСОВАНИЮ С ПРЕДСТАВИТЕЛЕМ ЕННОЙ ПРИЕМКИ ПРОВОДИТЬ ЭТТ В НОМ РЕХИМЕ.	
		禄 子
	АДБК.431432.013 ТУ	M

VE BYON NOOM & BATA

ION. U DATA BZAMUHBNUH

14.in.90

э.э. я. проверка упаковки

3.3.9.1. ИСПИТАНИЕ УПАКОВКИ - ПО МЕТОДАМ 404-2 И 209-4 ГОСТ 23088.

3.3.9.2. ИСПИТАНИЕ УЛАКОВКИ НА ПРОЧНОСТЬ ПРИ СВОБОДНОМ ПА-ДЕНИИ ПРОВОДЯТ ПО МЕТОДУ 408-1.4 ГОСТ 23088.

4. МАРКИРОВКА, УПАКОВКА, ТРАНС-

ПОРТИРОВАНИЕ И ХРАНЕНИЕ

4.1. МАРКИРОВКА

МАРКИРОВКА - ПО ГОСТ 18725.

4.1.1. НА КАЖДОЙ МИКРОСХЕМЕ ДОЛЖЕН БЫТЬ НАНЕСЕН РЕГИСТРАЦИОН-НЫЙ НОМЕР ИСПОЛНЕНИЯ (КАРТИ ЗАКАЗА).

4.1.2. ЧУВСТВИТЕЛЬНОСТЬ К СТАТИЧЕСКОМУ ЭЛЕКТРИЧЕСТВУ ОБОЗНА-ЧАЕТСЯ ♥ .

4.2. У П А К О В К А

4.2.1. YNAKOBKA - NO FOCT 18725.

4.2.2. МИКРОСХЕМЫ УПАКОВЫВАЮТСЯ В ПОТРЕБИТЕЛЬСКУЮ ГРУППОВУЮ

И ТРАНСПОРТНУЛ ТАРУ. УПАКОВКА ДОЛХНА ОБЕСПЕЧИВАТЬ ЗАЩИТУ ОТ

ЗАРЯДОВ СТАТИЧЕСКОГО ЭЛЕКТРИЧЕСТВА.

4.3. ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

4.3.1. ТРАНСПОРТИРОВАНИЕ МИКРОСХЕМ ПО ГОСТ 18725.

4.3.2. XPANENNE - NO FOCT 18725.

dokym. Nodn. Na

50L ND FOCT 2.105-68

АДБК. 431432.013 ТУ

IUC

22

DODMam

5. УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ.

5.1.УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ МИКРОСХЕМ

ПО ГОСТ 18725.

5.2. ДОПУСТИМОЕ ЗНАЧЕНИЕ СТАТИЧЕСКОГО ПОТЕНЦИАЛА

НЕ БОЛЕЕ 200 В.

5.3.УСТАНАВЛИВАТЬ И ИЗВЛЕКАТЬ МИКРОСХЕМЫ ИЗ КОНТАКТНЫХ приспособлений, а также производить замену необходимо только

ПРИ ОТКЛОЧЕННЫХ ИСТОЧНИКАХ ПИТАНИЯ.

5.4. РЕХИМ И УСЛОВИЯ МОНТАХА МИКРОСХЕМ В АНПАРАТУРЕ

OCT II 073.063.

5.5. МИКРОСХЕМЫ ПРИГОДНИ ДЛЯ МОНТАТА В АППАРАТУРЕ МЕТОДОМ ГРУППОВОЛ ПАЛКИ ПРИ ТЕМПЕРАТУРЕ НЕ ВИМЕ 265°С ПРОДОЛХИТЕЛЬНОСТЬЮ

BOJEE 4 c. HE

nD

'dydn.

B32M.UHBNUHB

МИКРОСХЕМИ ПОСЛЕ ДЕМОНТАХА ИСПОЛЬЗОВАТЬ ЗАПРЕЩАЕТСЯ.

5.6. МИКРОСХЕМИ ПОСТАВЛЯЮТСЯ С НЕФОРМОВАННЫМИ ВИВОДАМИ.

потребитель перед установкой микросхем в аппаратуру производит

ФОРМОВКУ ВИВОЛОВ В СООТВЕТСТВИИ С РИС.9.

75-58

С ТРЕТЬИМ СОСТОЯНИЕМ ВЕЛИЧИНА РЕЗИСТОРА МЕХДУ НИМИ И ИСТОЧНИКОМ интания Vcc определяется исходя, из допустимого виходного тока и

5.7. ПРИ ИСПОЛЬЗОВАНИИ ВНЕШНИХ ВИВОДОВ В РЕХИМЕ "ВХОД-ВИХОД"

ANEK.431432.013 TY

PODMAM

ДИНАМИЧЕСКОГО РЕХИМА РАБОТЫ МИКРОСХЕМЫ.

5.8: ИНСТРУКЦИЯ ПО РАЗРАБОТКЕ МИКРОСХЕМ НА ОСНОВЕ ЕМК 6K0.347.414 ТУІ.

5.9: ПРЕДЕЛЬНИЕ ЭЛЕКТРИЧЕСКИЕ РЕДИМИ ЭКСПЛУАТАЦИИ В ДИАПАЗО-НЕ ТЕМПЕРАТУР:

напряжение питания Исс не более 7,0 В;

2.105-58

 n_{D}

'ບິ່ນທີ່າ. ກົວດີກ. ບ ວີລະເລ

подп. и дата взам. инбулн

входное напряжение низкого уровня VZ не менее минус 0.4 В: предельная емкость нагрузки Сл не волее 150 пф:

АДБК. 431432. 013 ТУ

24

PODMam A

6. СПРАВОЧНИЕ ДАННИЕ

6.1. ЗАВИСИМОСТИ ОСНОВНЫХ ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ МИКРОСХЕМ ОТ РЕЖИМОВ И УСЛОВИЙ ЭКСПЛУАТАЦИИ ПРИВЕДЕНИ НА РИС.12-21.

6.2. ДОПОЛНИТЕЛЬНИЕ СПРАВОЧНИЕ ДАННИЕ ПРИВОДЯТСЯ, ПРИ НЕОБХОДИМОСТИ, В КАРТЕ ЗАКАЗА.

7. ГАРАНТИИ ПРЕДПРИЯТИЯ-

FOCT 2.106-68

nn

изготовителя

7.1. ГАРАНТИИ ПРЕДПРИЯТИЯ - ИЗГОТОВИТЕЛЯ ПО ГОСТ 18725.

7.2. ГАРАНТИЙНЫЙ СРОК ХРАНЕНИЯ ІО ЛЕТ СО^{*}ДНЯ ИЗГОТОВЛЕНИЯ. 7.3. ГАРАНТИЙНАЯ НАРАБОТКА 50000 ч. В ПРЕДЕЛАХ ГАРАНТИЙНОГО

ALIC

АДБК. 431432.013 ТУ

СРОКА ХРАНЕНИЯ.

8.КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ И ОБОРУДОВАНИЕ

і наименование прибора і (оборудования)	І ТИП ПРИБОРА І (ОБОРУДОВАНИЯ І	І ПРИМЕЧАНИЕ) І І
І І ИСТОЧНИК ПИТАНИЯ	і і липс п-20	
I I СИСТЕМА ФУНКЦИОНАЛЬНОГО I ПАРАМЕТРИЧЕСКОГО I КОНТРОЛЯ ЦИФРОВЫХ БИС	і і стенд — 1983 і	
I I ЦИФРОВОЙ УНИВЕРСАЛЬНЫЙ I ПРИБОР	и 1 1	i · · ·
I I ГЕНЕРАТОР ИМПУЛЬСОВ	і Г Г5-48	
I I УСТАНОВКА ФУНКЦИОНАЛЬНОГО I КОНТРОЛЯ БИС I	I ЛАДА И-II I ЦИОН 590 I	I* ПО СОГЛАСО- IBAHUЮ С ПОТРЕ- Iбителем
І ВЕСИ ЛАБОРАТОРНЫЕ І РАВНОПЛЕЧИЕ	1 I ВЛР-200	1

примечания: 1. Допускается применение приборов, отличных от указанных в перечне, но обеспечивающих проверку требуемых параметров и заданную точность. *. функциональный контроль на установке лада и-11 щион 590 проводится на частоте не более 5 мГц при Ucc = 5 в+5%. Входное напряжение низкого уровня Ust ≤ 0,5 в, входное напряжение высокого уровня Ust ≤ 0,5 в, входное напряжение высокого уровня Ust ≤ 0,5 в, входное напряжение высокого уровня Ust ≤ 0,5 в, входное напряжение бысокого информации проводится при Uot ≤ 1,0 в и Uoh ≥ 2,0 в. микросхемы, прошедшие функциональный контроль на ладе и-11 маркировать белой точкой.

106-68

JUCT. Nº OOKYM.

50

АДБК. 431432.013 ТУ

26

Dopmam.

9. ПЕРЕЧЕНЬ ПРИЛАГАЕМЫХ ДОКУМЕНТОВ

І.ГАБАРИТНЫЙ ЧЕРТЕХ ЩИО.073.242 ГЧ

2.СХЕМА ЭЛЕКТРИЧЕСКАЯ СТРУКТУРНАЯ ЩИЗ. 480. ЭІІ ЭІ

3.ОПИСАНИЯ ОБРАЗЦОВ ВНЕШНЕГО ВИДА ЩИО. 348.071 Д2 ицио. 434.02992

4. ИНСТРУКЦИЯ ПО РАЗРАБОТКЕ МБИС С ПРИМЕНЕНИЕМ САПР

6K0.347.4I4 TVI.

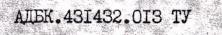
5.KAPTH 3AKA3A: JI3. 414.407 A. JI3.414.408 A.

- УІЗ: 414:409 Д

6. СХЕМЫ ЭЛЕКТРИЧЕСКИЕ ПРИНЦИПИАЛЬНЫЕ: УІЗ. 480. 075 ЭЗ

YI3:480.076 33

y13:480.077 93


*- ДОКУМЕНТИ ВИСИЛАВТСЯ ТОЛЬКО ПРЕДПРИЯТИЯМ;

СТОЯЩИМ НА АБОНЕНТСКОМ УЧЕТЕ ПО СПЕЦИАЛЬНОМУ

ЗАПРОСУ - ДОГОВОРУ:

B3 QM. UHENUHE 'BYDD. MODD. U

ПИСТ Идокум. Подп. Дата 12.50. пр. ГОСТ. 2.105-58

Popmam

Ссилочные нормативно технические зокушенты 10: перечень обозначения документов, на которие

Bas

-дани ссилки в ту

I ОБОЗНАЧЕНИЕ I ССИЛОЧНОГО ДОКУМЕНТА I	і 1. ЛИСТ 1.
1 FOCT 18725-83	11 12,8,10,11,23,25
I FOGT 15150-69	12
I FOCT 17021-88	12
1 FOCT 19480-74	12
! FOCT 18683.1-83	115,16
1 FOCT 18683.2-83	118
I FOCT 25359-82	135
I FOCT 21493-76	135
I FOCT 23088-80	122,34
1 OCT II 0224-85	12
1 OCT II 073:013-83	111,14,15,18,19,20,21
	132 - 35
I OCT II 073.915-80	12
I OCT II 073.944-83	116,17
! OCT'II 073:063-84	123
I FOCT 21931-76	143,44
I FOCT 20:39:405-84	15
1 PD 11 0723-89	1 <i>2, 5</i> 6a
1	1
1	1
	Т
1	
A בד. איז לסגיצוא. איז לא איז איז איז איז איז איז איז איז איז אי	дБК.431432.013 ТУ

BYON NOON U DATO

1 Data B30MUHBNUHBI

		IE I TY HKT I IPMME4A- Y-I TY I HNE I I I I I I I I I I I I I I I I I I I	<u>T0</u> 3.3.4.11 	$\frac{1}{10!}$	10 	25±10 70 13;3;4:21	
		ВИХОД-ЕМКОСТЬ ТЕМПЕ ПУНКТ НОЙ НАГРУЗ- РАТУ-І ТУ ТОК, КИ, РА, РА, Z_{O} , C_{A} , P_{A} , P_{A} , C_{A} , C_{A} , C_{C} , C_{A} , C_{C} ,	- <u>- 10</u>	ĩ	<pre>< 60 125±10</pre>	<u>≤60 25±</u> <u>-10</u> 70	
	5	1 ВИХОЛ- 1 НОЙ 1 ТОК. 1 мА	1.6± 1.5% 	 0.4±5%	l 1	****	
C	TABANUA	ЕНИЯ ТЕСТОВОЙ ИНИ 2 1 ВХОДНОЕ 1 НАПРЯХЕ- 1 НАПРЯХЕ- 1 НИВ ВИ- 1 СОКОГО 1 УРОВНЯ, 1 <i>VZH</i> , S	4,0	φ, 0	4,75 5,25	4,75 5,25	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.6	0	0	
y data		<u>РВЖ</u> НАПРЯ-1 ХЕНИЕ ПИТА- НИЯ, НИЯ, ГСС, В 1	4,75	1 4.75	4,75 	1 4,75 1 5,25	
3W./1000/		HOUPEU- HOCT5, %	‡ 2,5	±1.0	1±(1%+ 1+15 µB)	±(I%+ ₁ +I5 MB)	
HE ON		HOPMA HE I HE MEHEEI BOAEEI	10.5	1	10,8	ا م م م م م م	
I UHEN C		sees and and and and and and this and	 	• •	 		
0 030		1 159/K - 186H - 1805 10503 - 1845 - 1845 - 1846 -	Nak	Hod I	1 Den	Hol	
HE Nº NOON U OQTA B3AMUHEN UHE ' OSON NOON U OATA		НАИМЕНОВАНИЕ ПАРАМЕТРА. ЕДИНИЦА ИЗМЕ- РЕНИЯ	<u>т.т</u> . виходнов <u>т.з</u> . напрядение <u>т.з</u> . назкого уровня, в	2.1. ВИХОДНОБ 2.2. НАПРЯХЕНИЕ 2.3. ВИСОКОГО УРОВНЯ, В	<u>3.1</u> . ВНХОДНОЕ <u>3.2</u> . НАПРЯХЕНИЕ <u>3.3</u> . НИЗКОГО УРО ВНЯ ПРИ ФУН КЦИОНАЛЬНОМ КОНТРОЛЕ. В	<u>4.1</u> . ВИХОДНОЕ <u>4.2</u> . НАПРЯХЕНИЕ <u>4.3</u> . ВИСОКОГО §УНКЦИО- НАЛБНОМ КО- НАЛБНОМ КО- НТРОЛЕ. В	
92 692		1/20059M. 1000 MQ 50, 00 100	. <u>Пата</u> т 2.105-68		АДБК. 43	31432.013 TY	1000 29 ФОРМОЛПА

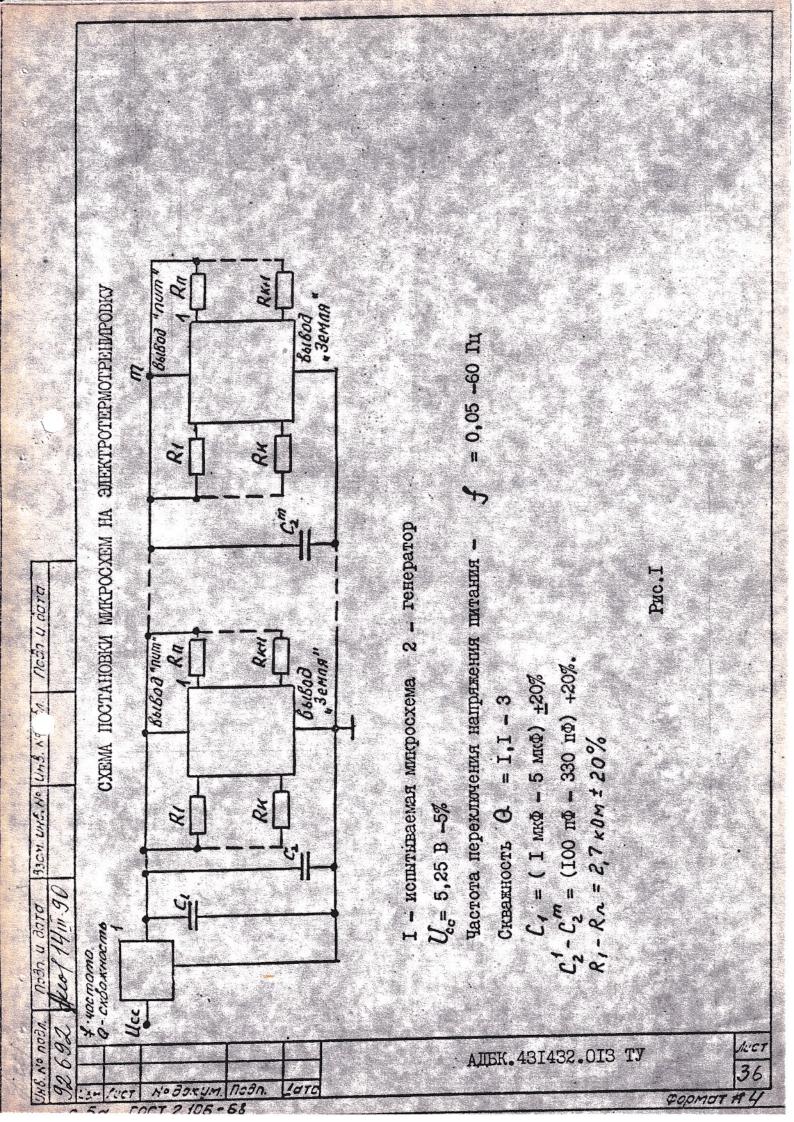
							продолжен	ПРОДОЛХЕНИЕ ТАВА.5					
Nºðakym. Nada.	НАИНЕНОВАНИЕ НАРАМЕТРА, ЕДИНИЦА ИЗИЕ- РЕНИЯ	Byk- Byk- BEH- HOE HOE HA 4E- HME	HOPMA HE I H MEHEEI BO		HOLPEH- HOCT5,	$\begin{array}{c c} & \underline{PEXUM} \\ I & I & 3H \\ HA & PA - I \\ I & HA & I & BX \\ I & XEHNE & I & BX \\ I & XEHNE & I & BX \\ I & I & I & HA \\ I & HAA & B & I & HA \\ I & HAA & B & I & HA \\ I & I & I & I & I \\ I & I & I & I & I$	NARANEP NARANE BEINY BEINY DAHOE DAHOE TO NA- TO DBHA	НИЯ ТЕСТОВОЙ НИ 2 ВХОДНОЕ НАПРЯЖЕ- НИВ ВИ- СОКОГО УРОВНЯ,	$\begin{bmatrix} 1 & HXOA \\ 1 & HOA \\ 1 & TOA \\ 1 & A \\ 1 & A \end{bmatrix}$	EHKOCTEITEMIEI HATPY3-IPATY-I KM, IPA, IPA, I KM, IPA, I	I TEMIEL	IIYHKT TY	НИЕ
llana.	5.1 TOK 5.2 HOTPEBAEHNA, 5.3 MA 6.1 TOK YTE4KM 6.2 HN3KOFO M 6.3 BHCOKOFO BYONE BYONE	TLEN TLEN		0 ^{.8} 10 10 10	¥2 ¥2	5,25	0 0	5,25	1 t	1	25±10 -10 -10 -10 -10 -10	3:3:4:3	
АДБК. 431432	7.1. виходной 7.3. п високого Уровней в состоянии "Виключено" жжа	Iozh Iozh		L C	\$	22 22	0	5.25			25±10	3;3;4;5	~
2.013 TY													
<u>NUCT</u> 30													

X

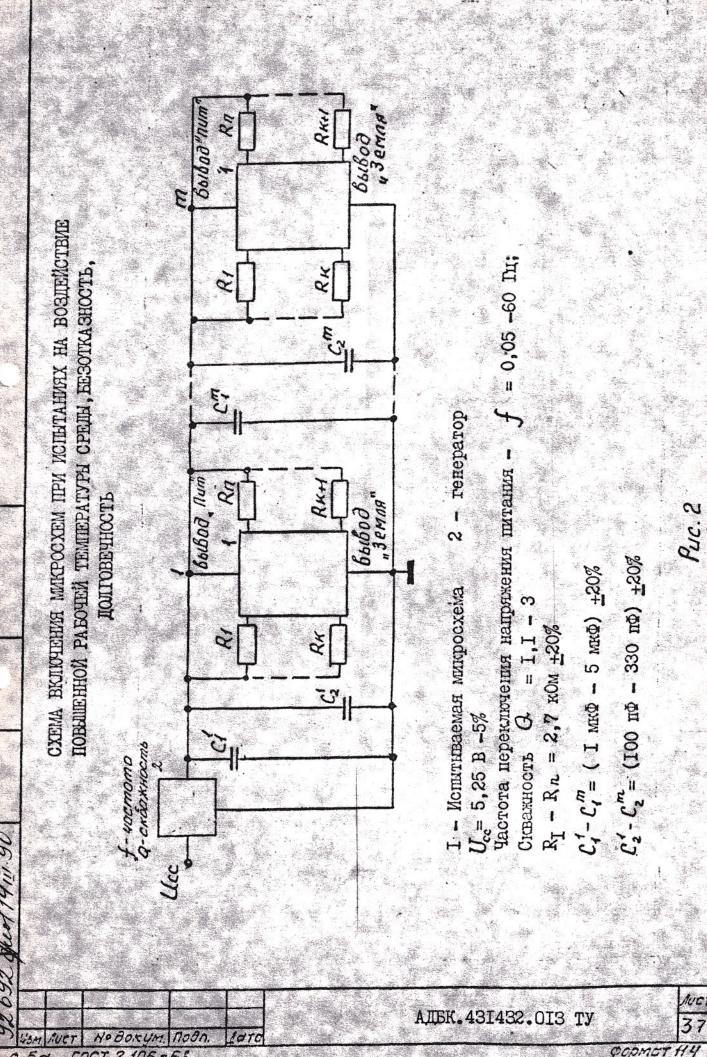
UHB Nº	Nº NOG NOGN U DATA BJAM UHBN UHB	1 7	3461. 1001 U đa	272				
					продолженив	CEHNE TAEJ.5	ĥ	
T. Nº DOKYM. NODA.	HAUMEHOBAHME I BYK- I HAUMEHOBAHME I BYK- I HAPAMETPA, IBEH- I EJUHMJA M3ME- IBEH- I PEHMA M3ME- IBOE IHAE- I IHAE- I IHKE I	HOPMA II HE I HE I MEHEEI EOJEEI	norpen-1 Hoctb, lhanp % lixehu hhaf, i zzc	PEXKN M3MEH I 13HA 4EHME PA-1 BEJM4I KE 1BX0AHOE A- 1HALPARE- , 1HME HM3- 1KOF0 KOPOBHA,	1 1 виход 1 гиой 1 Гок, 1 ид	- LENKOCTELT HAPPY3-IF KN, - IF	b TEMRE INYHKT IRPU	примеча Ниб
11ana T 2 405	8.1. ВРЕИЯ ЗА- 1 8.2. ДЕРХКИ, но 1 Zd 1 8.3.	*	±5%-5нс	2 1 0	4,5 I		$\frac{25\pm10}{70}$ 3,3.4.61	
адбк. 431432. 013 ТУ 68 ФОР	IPUNEYAHNA: I.	НОСТЬ НОСТЬ 7.7.4 РГГ 3.4 РГЕ 3.4 АЗАНИЕ АЗАНИЕ АЗАНИЕ	НОВКИ ПИЛ НОВКИ УРС У ДОЛХНА ВХОДНИХ ПОО ИВ Д ИКРУ DТСЯ ЧЕНИЯ ПАЛ ТОДА КОН	DUETO HANPAN HEN SHAYEHNN HEN SHAYEHNN HEN SHAYEHNN ANPAZEHNN N TEJEHOCTED HAJNYUN N METPOB, BPF AHABJUBATECF OJA.	Рякения долхна Бить не хух ний тестових величин же ±(1% + 15 мв). Низкого и высокого уровне и их в карте заказа и их в карте заказа времени задерхки приведени ься другие динамические па	HE XYXE YPOBHER Berehu B Kue Hapa	±(I% + 20 wB) doHyckAbrcf OrkJO- METPN	- de
NUCT 31 MOLTIA	10.000	*				·		

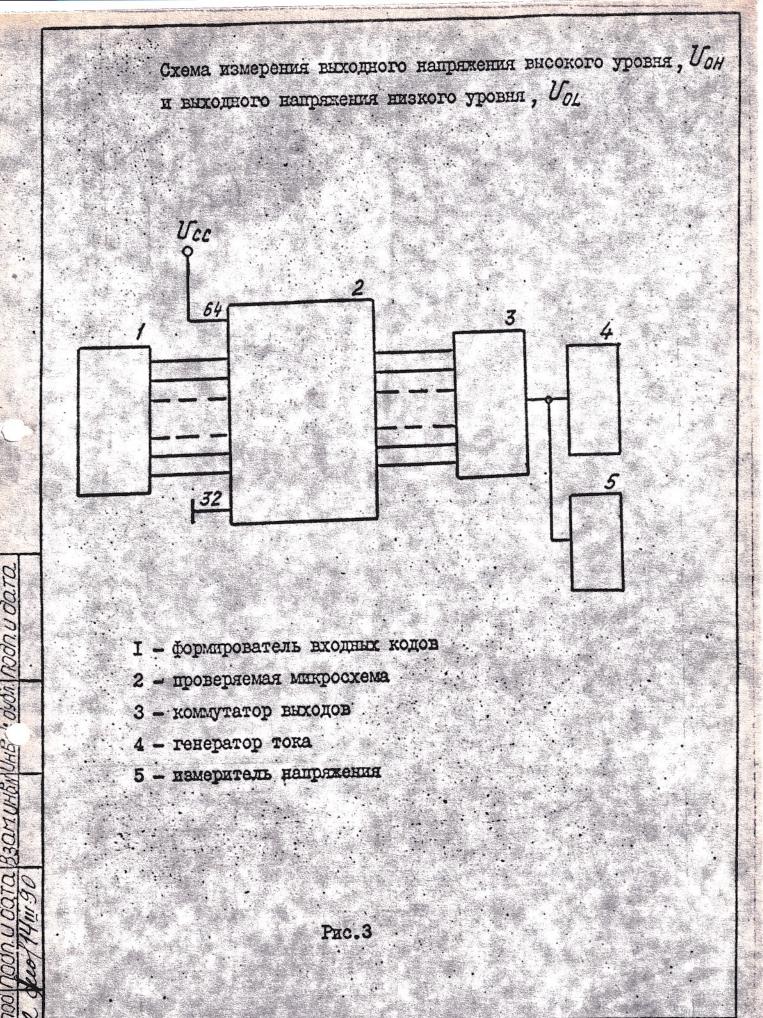
						ТАВЛИЦА 6.		
T E N F	FPY II − I IA I NCIN − I TAHNA I	ВИД И ПОСЛЕДОВАТЕЛЬНОСТЬ ИСПИТАНИЙ	I IIOPA AKOBUE I B COO I TEPEA I NCTIUTAHN - I EM	HOMEPA TBETCTBV 1B UPOUE 1CE NCUE 1TAHNA	AMETPOB TABJ-5 IIIOCJE INCINTA- IHNA	I METOA NCHA METOA NCHA I METOA NO I OCT II 073.013	NCINTARNA I INYHKT I I I I I I I I I I I I I I I I I I I	HIPUNE I YAHNE
		ПРОВЕРКА ВНЕШНЕГО ВИДА И МАРКИРОВКИ	1	1 1 ПО ОПИСАНИ 1 ОБРАЗЦОВ 1 ВНЕШНЕГО 1 ВИДА 1 ЦИО. 348.		405-I.3	13.3.2	
ن ⊭	K-2 1 C-2 1	ПРОВЕРКА ГАБАРИТНЫХ, УСТАНО- ВОЧНИХ И ПРИСОЕДИНИТЕЛНИХ РАЗМЕРОВ		1071 J2 100 4EPTEXV 1010.073.	<u>1 Родки 1</u> 	407 <u>-1</u>	AND THE REPORT OF THE REAL PROPERTY OF THE REAL PRO	
¥0	K-3 C-3 C-3 C-3	. RPOBEPKA CTATNYECKNX RAPAMET- POB, OTHECEHHUX K KATETOPNN "C" RPN: HOPMAJBHUX KJNMATNYECKNX				T-+0-		
) 	 1 4	500-T		
	• • • •	ROBNEETHON PASOYEN TEMNEPATYPE	1	11.2;2.2;5.2 16.2;7.2 11.3;2.3;5.3	ן ו ארה	203-I	13.3.6.1 	
[432.0]	~	СТЕДА .ПРОВЕРКА ДИНАМИЧЕСКИХ ПАРАМЕТ- РОВ, ОТНЕСЕННЫХ К КАТЕГОРИИ "С" ПРИ НОРМАЛЬНЫХ КЛИМАТИЧЕС-		and a state of the second second second second second second second second second second second second second s	+	201-I.I	13.3.6.2	
13 TY		КИХ УСЛОВИЯХ .ФУНКЦИОНАЛЬНЫЙ КОНТРОЛЬ ПРИ: НОРМАЛЬНЫХ КЛИМАТИЧЕСКИХ	1	* I.8 		1-005		
	- - ·	YCJIOBNAX HOHNYEHHOR PAEO4ER TEMBEPATYPE	1 	1 3.I.4.I	. - 	500-7	13.3.4	
		OPEAN IOBMEEHHON PABOYEN TEMNEPATYPE	ا ا	1 - 3.2,4.2 1		-1 602		
		СРЕДИ	•	1 3.3;4.3		201-I.I	13.3.6.2	

		I IPANE-			PNC.2		1 PNC.2					PWG.2		
	Л., б		I TY I TY I	1 1 13:3:6:T 1	13.3.6.2	13.33°4	13:3:6.2 1	 3.3.6.3 	13.3.5.3	13:3:5:T	13.3.3.8	 I:4:6:6		
	продолхение табл.6	МЕТОД ИСПИТАНИЯ	NETOL NO OCT II 073.013	203-T	201-2.I	500-7	20I-2:I	205-I	I-COI	. I06-I	208-2	7-007		•
		HAPAHETPOB I M C TABJ.5 I	после Испитания I	NNN	11.3;2.3; 15.3;6.3; 17.3;8.3 * 1	1		1.1.2.1.3.1 4.1.5.1.6.1 7.1.8.1 *	I.I.2.I	I.I;2;I	II.I.2.I.3.II 4.I.5.I.6.I! 7.I.8.I.*	нн 1 4 6		
		HOMEPA TBETCTBM	B RPOHECCEI NCHNTAHNA I	2;2;2;5;2 ;2** 7;2**	1.3,2.3; 5.3;6.3; 7.3 * 3;	I.t.I.e	3.3:4:3	1	ſ	1	5.3**	11.3;2.3;3.31 14.3;5.3;6.31 17.3;8.3 * 1		
son noon v da		Ny m	И ПЕРЕД ИИСПИТАНИЕМ И	.2:2:	11.3.2.3; 15.3;6.3; 17.3*		1 3 3 4 3	1.1.2.1.3.1 14.1.5.1.6.1 17.1.8.1 *	I.I.;2;I	ui:1;2:1	11 1, 2, 1, 3, 1 14 1, 5 1, 6, 1 17 1, 8, 1 *	I.I.2.I.3.1 4.I.5.I.6.1 7.I.8.I *		
HE Nº NOO NOON U DATA B30MUHBIN		І ВИД И ПОСЛЕДОВАТЕЛЬНОСТЬ	ИСПАТАНИЯ	ИСИЦТАНИЕ ПОНИЖЕННО ТЕМПЕРАТУ	12.ИСИМТАНИЕ НА ВОЗДЕИСТВИЕ 11. ПОВИШЕННОЙ РАБОЧЕЙ 11. ТЕМПЕРАТУРИ СРЕДИ 13.ФУНКИМОНАЛЬНИЙ КОНТРОЛЬ		PE CP	и. испитанию на воздеиствию И ИЗМЕНЕНИЯ ТЕМЛЕРАТУРИ СРЕДИ	12.ИСПИТАНИЕ НА ВОЗДЕЙСТВИЕ И линейново усудерения		ts G	L NCHWTAHNE HA EE30TKA3HOCTEI		
1 269		TPVII- IIA	ACRU- TAHNG	ж 1 - 5 1 - 5 2 - br>5 2 - 5 2 - 5 2 - 5 2 - 5 2 - 5 - 5				К-5 П-3			- A4	К- 6 П-1		NULT
976 978 (BM	JUCT. DODI	CONTRACTOR AND	окум. 50. по	ПОДП. ГОСТ	llana 2.106-	68	A)	ц БК. 4:	3143	2.0	I3 Ty	•	40	AUCT 33 DMD/MA


T				-> W> T11	продолление тарл. о	
LPVII-	M HOCHBINDEANDEALUCANL	ПОРЯДКОВИЕ НОМЕРА в соотвитство	HAPAMETPO	+	МЕТОД ИСПИТАНИЯ	· IRPN-
ПА ИСЛЫ- ТАНИЯ	Н ВИД И ИОСЛЕДОВАТЕЛЕНОСТВ И ИСПИТАНИЙ И	W	IB IPOUECCE 1 HOUJE		IMETOR NO 10CT II 073.013	HKT I-
K - 7	H		4W1 -	MAPKNPOBKM 1 1 1 1	407-I	3.3.8.1 &
	I CPEACTBAM 12: ПРОВЕРКА ПРОЧНОСТИ ВНЕШНИХ I 1 ВИВОДОВ 1	I.I.2.I.3.I.1 4.I.5.I.6.I.1 7.I.8.I*		AO	109-1, 110-3	13:3:4
	1 13:ИСПИТАНИЕ НА СПОСОБНОСТЬ 1 риволов и найкв	 		BHBOLOB B I MNKPOCXEME I	402-I	13:3:3:51
		1.1:2.1:3.1:1 4.1:5.1:6.1:1 7.1:8.1 * 1		I.I.2.I.3.II [4.I.5.I.6.II [7.I.8.I *	1-604	1 13:3:3:61 1
	15.NCRNTAHNE HA ROBMBEHHYD 1 BJAXHOCT5 1	-	$- \begin{bmatrix} 1\\11\\14\\17\\17 \end{bmatrix}$	I.I.2.I.3.I 4.I.5.I.6.I 7.I.8.I * 1	208-2	13.3.3.71
8 1	I NCHUTAHNE II. HPOBEPKA F POB HOTPEE I CHOPTHON T				404-2 FOCT 23088	11;9;3;9;1
	12.ИСПИТАНИЕ НА ПРОЧНОСТЬ ПРИ 1 СВОБОДНОМ ПАДЕНИИ 1	1.1,2.1;3.1; 4.1;5.1;6.1; 7.1;8.1*	1 7 7 7 7 7	нн	408-1.4 ProcT 23088	13:3:9:21 1 1 1
K-9 11-5	и испитанив на ударную проч- и ность (мнорократние удари)	11.1;2.1;3.1;1 14.1;5.1;6.1;1 17.1;8.1*	· #	I.I.2.2.1.3.11 4.1.5.1.6.11 7.1.8.1*	I-#0I	1 13.3.5.21 1
K-1	K-IOII.HPOBEPKA MACCH	IB3BEURBAHKE I	1	1	406-I	13:3:3.31

A CONTRACTOR OF THE OWNER OF


All Contraction


BULT UNCLEADER TABLE HOREPA HAPANETPOB NETOAL WORLAHNGTH NORMATANNA BULT UNCLEADER TAPANETPOB INFORM					продолление табл	9.
WGHWTAHIR MEPEA IB FIDOLECCE MOURACHIA METOA HO HYHK ACHUTAHIE HA BOJABRCEBUE 11.1.2.5.1.5.1 11.1.2.5.1.5.1 11.1.2.5.1.5.1 12.5.1.5.1	10 St 10 ST 10		I ROPARKOBNE HONEPA I B COOTBETCTBN	TABE		САНИЯ
. MCHWTAHUE HA BO3AEGCTBUE IIIII:211311 IIII:211311 210-1 3:3:6: . ATNOCEEPHOTO HOBMERENDO 7151611 - 111221311 210-1 3:3:6: . ATNOCEEPHOTO HOBMERENDO 11151121311 - 111221311 210-1 3:3:6: . ATNOCEEPHOTO HOBMERENDO 11152131111221311 - 1112213111221311 700-2:2 3:3:6: . ATNOCEEPHOTO HOBMERHOTO 1115213111221311 700-2:2 13:3:6: 13:3:6: 13:3:6: . ATNOCEEPHOTO HOMMERHOTO 11152131111221311 700-2:2 13:3:7: 13:3:6: . ATNOCEEPHOTO HOMMERHOTO 1115213111221311 700-2:2 13:3:0:6: . ATNOCEEPHOTO 11112213111221311 700-2:2 13:3:0:6: . ATNOCEEPHOTO 1111221311 5:3*** 17:1:8:1* 700-2:2 13:3:0:6: . ATNOCEEPHOT 7.1:8:1* 7.1:8:1* 77:1:8:1* 700-2:2 13:3:0:6: . ATNOCEEHOR 17:1:8:1* 5:3*** 17:1:8:1* 700-2:2 13:3:0:6: . ATNOEADEDEND 17:1:8:1* 5:3*** 17:1:8:1* 700-2:2 13:3:0:6: . AUHUTAHUE IA OOCEEHOE	NCILI- TAHNA		D A	1 IOCJE INCTNTAHNS	TOA	1 IIYHKT
II.I.2.I.3.III.I.2.I.3.III.I.2.I.3.III.1.2.I.3.II COPT DOT I INCINTARME HA JOJFOBEYHOCTЬ 14.115.115.115.116.11 DOT 212 3.3.7. II.MCINTARME HA JOJFOBEYHOCTЬ 7.118.11* 17.118.11* 17.118.11* 13.3.7. II.MCINTARME HA BOJADAGTBME NOT 7.118.11* 17.118.11* 17.00-212 3.3.7. II.MCINTARME HA BOJADAGTBME NOT 7.118.11* 17.118.11* 17.00-212 3.3.3.6. II.MCINTARME HA BOJADAGTBME NOT 7.118.11* 5.3*** 14.115.118.11 700-212 3.3.3.6. II.MCINTARME HA GORDEHOCTB 7.118.11* 5.3*** 14.115.116.11 207-2 3.3.3.6. II.MCHWTARME HA COCOEHOCTB 7.118.11* 5.3*** 14.115.116.11 207-2 3.3.3.6. I.MKPOCXER JAKON 7.118.11* 5.3*** 14.115.116.11 207-2 3.3.3.6. I.MKPOCXER JAKON 7.118.11* 7.118.11* 700-211 3.3.3.6. I.MKPOCXER JAKON 7.114.135.116.11 700-211 3.3.3.7. I.MKPOCXER JAKON 7.114.135.116.11 700-211 3.3.3.7. I.MURPOCXEN HAR A COXPAHARE HA A COXPAHARDOCTE - - - 410-2<		. ИСПИГАНИЕ НА АТМОСФЕРНОГО ДАВЛЕНИЯ . ИСПИТАНИЕ НА АТМОСФЕРНОГО ЛАВЛЕНИЯ	11.1;2.1;3.11 14.1;5.1;6.11 17.1;8.1* 17.1;2.1;3.11 14.1;5.1;6.11 14.1;5.1;6.11	11.1.2.1.3.1 14.1.5.1.3.1 17.1.8.1. 11.1.2.1.3.1 14.1.5.1.3.1 14.1.5.1.3.1	2 5 7	. 3.6
11. NCINTAHNE HA BO3/JEHGTBME NOTITIETISTISTI 11. NCINTAHNE HA BO3/JEHGTBME NOTITIETISTISTI 13. 13. 11. 11. 12. 11. 31. 11. 11. 11. 11. 11. 11. 11. 11	H H	1 ИСПИТАНИЕ НА	<u>IIII:</u> 14.1:5.1 14.1:5.1	3.111.1.2.1; 6.114.1:5.1; 17.1;8.1*	2;2-00-1	13.3.7.2
011. NCHHTAHNE HA GHOCOBHOCTЬ - - - 410-1 93.33.3 BN3HBATЪ FOPEHNE - - - - 410-1 93.3	-12	II.ИСПИТАНИЕ НА ВОЗЛЕЙСТВИЕ ВИШЕННОЙ ВЛАЖНОСТИ ВОЗДУ) I (ДЛИТЕЛЬНОЕ)ВЕЗ ПОКРЫТИЯ MMKPOCXEM ДАКОН	II.I.2.I.3.II 4.I.5.I.6.II 5.3 7.I.8.I*	* 11.1;2.1;3. * 14.1;5.1;6.	207-	3:6;
II.I.2.I.3.II.3;2.3;3.3I.I.2.I.2.I.3.II I#.I.5.I.5.II.4.3;5.3;6.3I4.I.5.I.5.II I7.F.8.I.* I7.F.8.I.* <td>15</td> <td>. MCHNTAHNE BN3NBATb T . MCHNTAHNE</td> <td>-</td> <td></td> <td>I-014 1</td> <td>6.6</td>	15	. MCHNTAHNE BN3NBATb T . MCHNTAHNE	-		I-014 1	6.6
HA COXPAHAEMOCTЬ [I.I.];2:I;3:I[I.I;2:I;3:I]1.I;2:I;3:I] [4:I;5:I;6:I[4:I;5:I;6:I[4:I;5:I;6:I]4,I;5:I;6:I] [7:I;8:I * [7:I;8:I * [7:I;8:I *]7:I;8:I *]	9	I I.ИСПИТАНИЕ НА ДОЛГОВЕЧНОСТЬ	.I:2.I:3.I!I.3;2.3 .I:5.I:6.I!4.3;5:3 .P:8.I*	3.311.1;2.1;3. 6.314.1;5.1;6. * 17.1;8.1*	1 700-2	.3.7.
		HA	.I:2.I:3.I!I.I.2.I .I:5.I:6.I!4.I:5.I .I:8.I * 17.I:8.I	3.III.I;2.I;3 6.II4.I;5.I;6 * I7.I;8.I *	L POCT	

-

neen u bara 1030. U 30TO 3304. UHS. Nº 148. Nº 3;54. 92 692 deef 14 11. 90 UNS. Nº NOAN.

IRM

CT. Nº OO

PODMA 5a

COCT 2.106-68

лібк. 431432.013 ТУ

AUCT 38-

popmam A

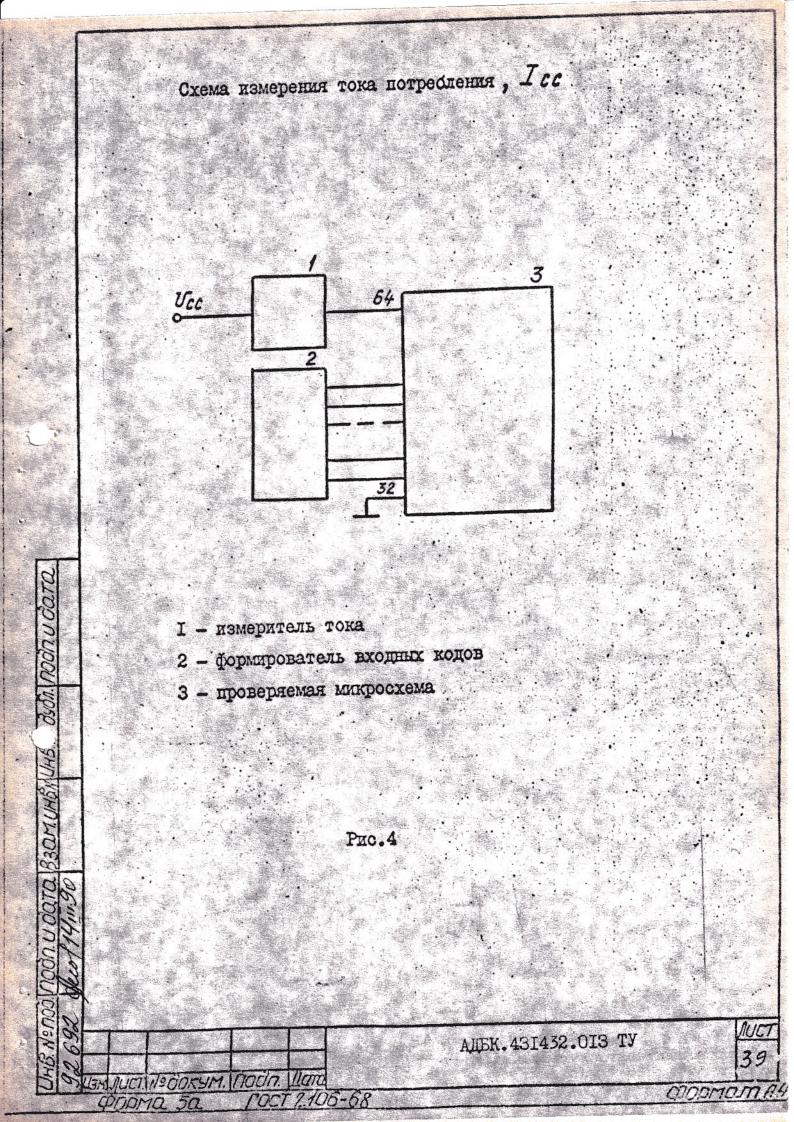
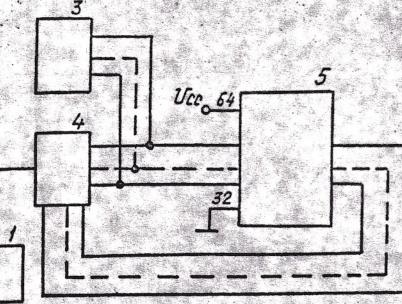



Схема измерения токов утечки низкого и высокого уровней на входе (втекающие) *ILIH*. (витеканщие) *ILIL* и выходного тока в состоянии "Вы ключено" при напряжениях низкого и высокого уровней *ICZL*, *IozH*.

- I измеритель тока.
- 2 источник питания
- 3 формирователь входного напряжения
- 4 коммутатор контролируемых выводов
- 5 проверяемая микросхема

Puc.5

oyón. Rodn u da

UHB,

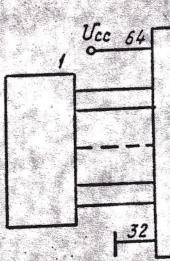
OMINAN

5

40 40

AIEK. 431432.013 TY

ΠUC


Схема измерения выходного напряжения высокого уровня, *Uон* и выходного напряжения низкого уровня, *Uok* при функциональном контроле

3

АЛБК. 431432.013 ТУ

QUODMOLM A

2

iyón noon u dara

noon u data Bzamuhbaluhb.

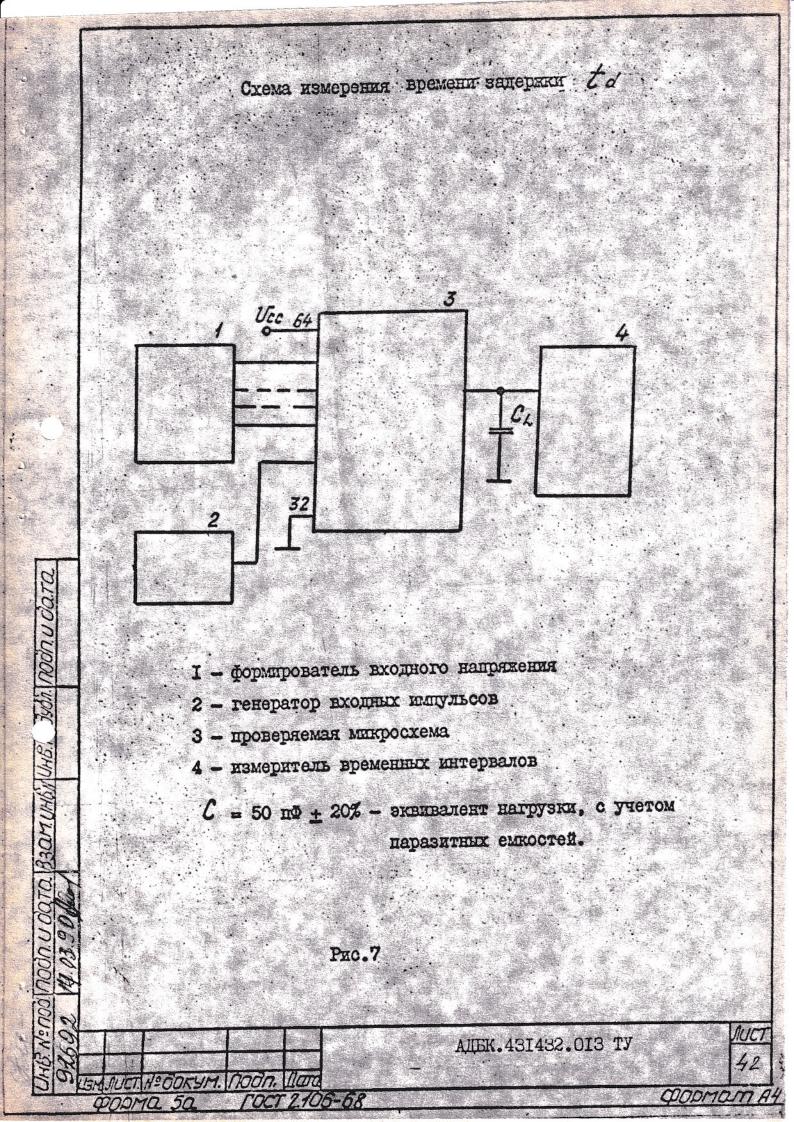
OUUSN

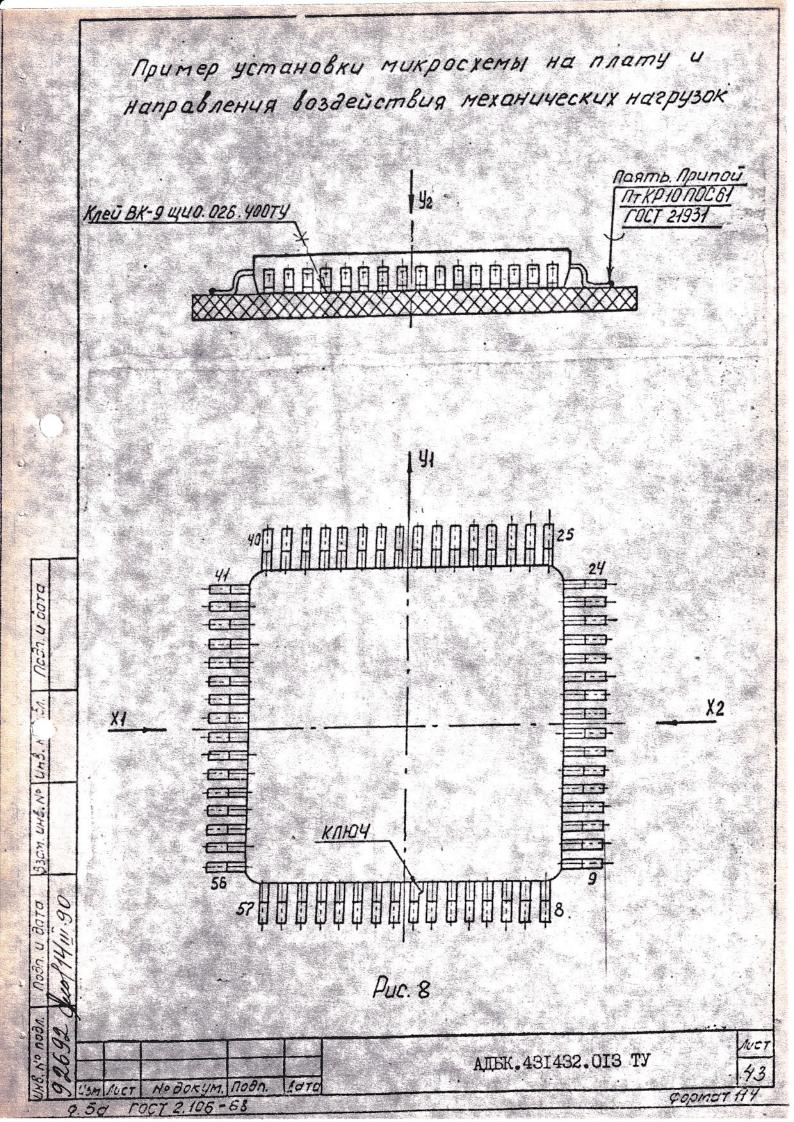
111.90

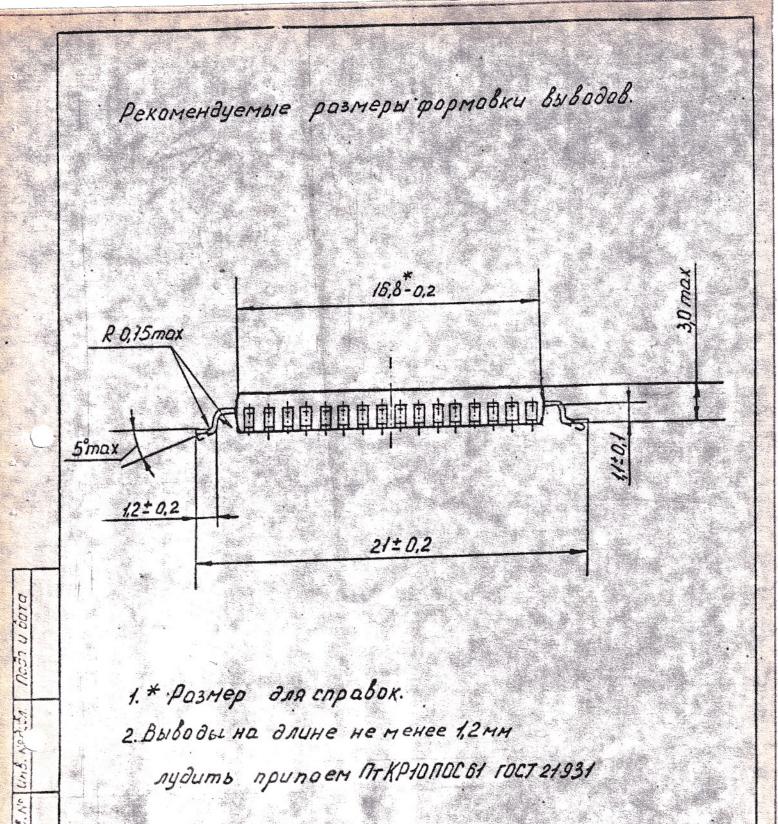
1 - коммутатор входных воздействий
2 - проверяемая микросхема
3 - коммутатор выходов
4 - измеритель напряжения

Pac.6

llana


POCT 2.106-68


nodn.


HEDOKYM.

MUCT.

CODMA 50

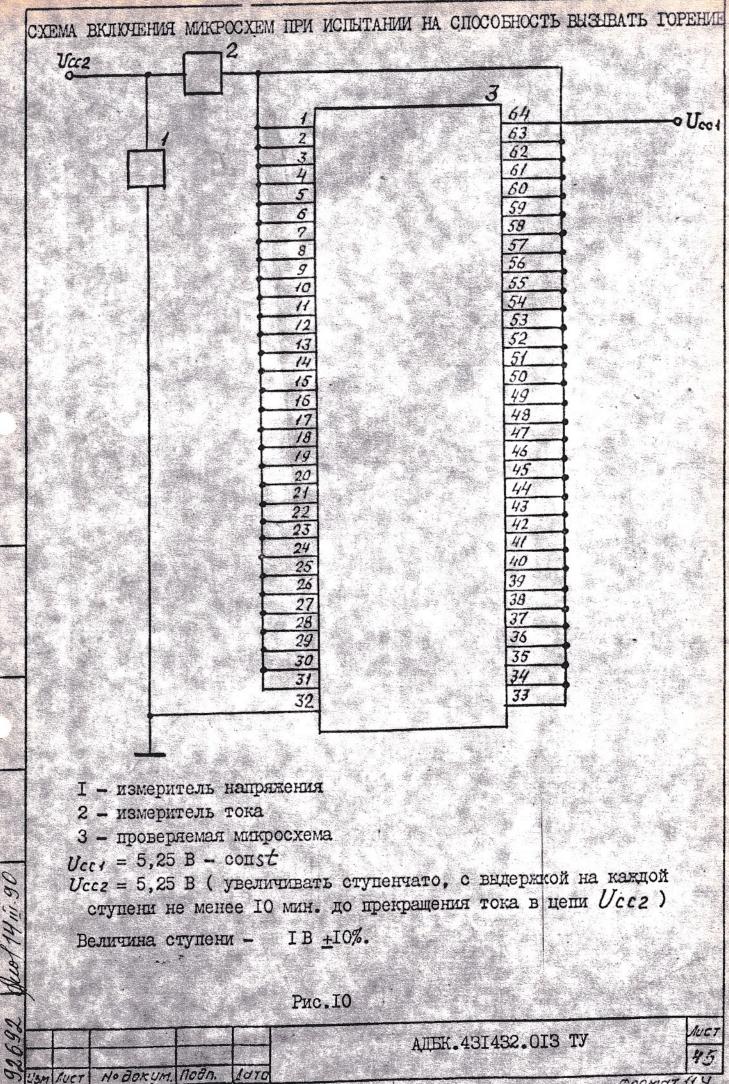
Puc.g.

24

411

No BORUM. NOBA.

fier.


101

АЛБК. 431432.013 ТУ

AUC

41

GODMOT

0070

5

ncon.

So

UNS.

UH5. Nº

33C.M.

<i>daTa

FORT 2 105 - 68

POOMOT 114

СХЕМА ВКЛЮЧЕНИЯ МИКРОСХЕМ ПРИ ИСПЫТАНИИ НА ВО: ДЕЙСТВИЕ ПОНИЖЕННОГО АТ

に開き	
and the second	
	RI I
	<u>R2</u> 2
	a financia financiale and an and a second second
	<u>R3</u> 3
	R4 +
	<u>R5</u> 5
TR. K.	
Theorem	<u>R6</u> 6
	<u></u> 7
	<u>R8</u>
100	
	R9 0
	RIO
	<u></u>
	RIZ
	- 12
1	017
+	<u> </u>
	<u>R14</u>
	······································
a I	R15_15
antiperate F	the second second second second second second second second second second second second second second second se
	R16 16
T	PIT
	R18 (0
- F	
	<u>R19</u> 19
T	
A L	R20 20
	821
. F	
	R22
	22
	R23 23
	R24 24
	P25
	<u>R25</u> 25
	826
	<u>R27</u> 27
202	0.00
一个限	Pnn
	49
	R30 30
T	pzi
L	R31 31
	32
	32
	March 1 March 1
1	

dama

nboi

OYON.

9

1 2	
	930
63 ·	, <u></u> ,
62 <u>R33</u> 61	<u>R34</u>
60 ' R35	
59	<i>R36</i>
58 R37	
57	<u>R34</u>
56 R39	
55	R40
54 R41	
53	R42
52 R43	
51	
50 <u>R65</u>	
49 48 <u>847</u>	
48	R48
46 <u>R49</u>	
45	<u>R50</u>
44 <u>R51</u>	
43	R52
42 R53	
41	R54
40 R55	
39 857	RSG
38 <u>×37</u> 37	<u>R58</u>
36 <u>R59</u>	
35	R60
34 . <u>R61</u>	
33	<u>862</u>

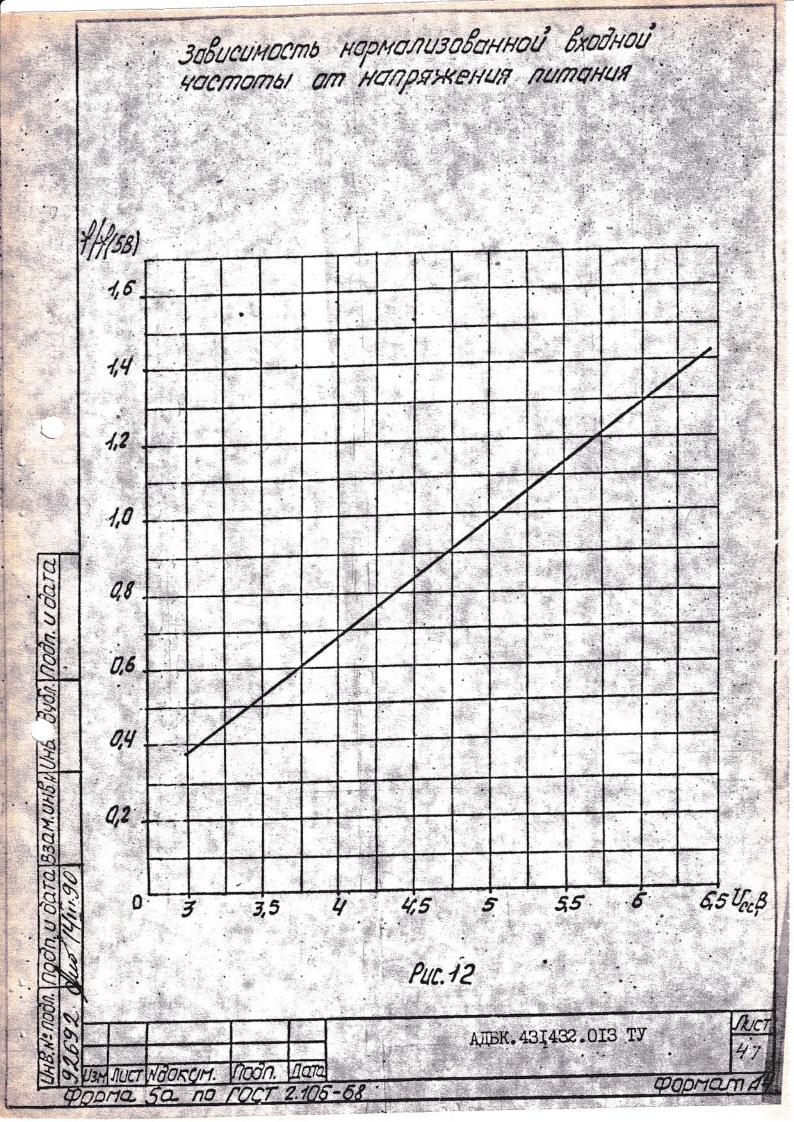
Puc.II

Копировал

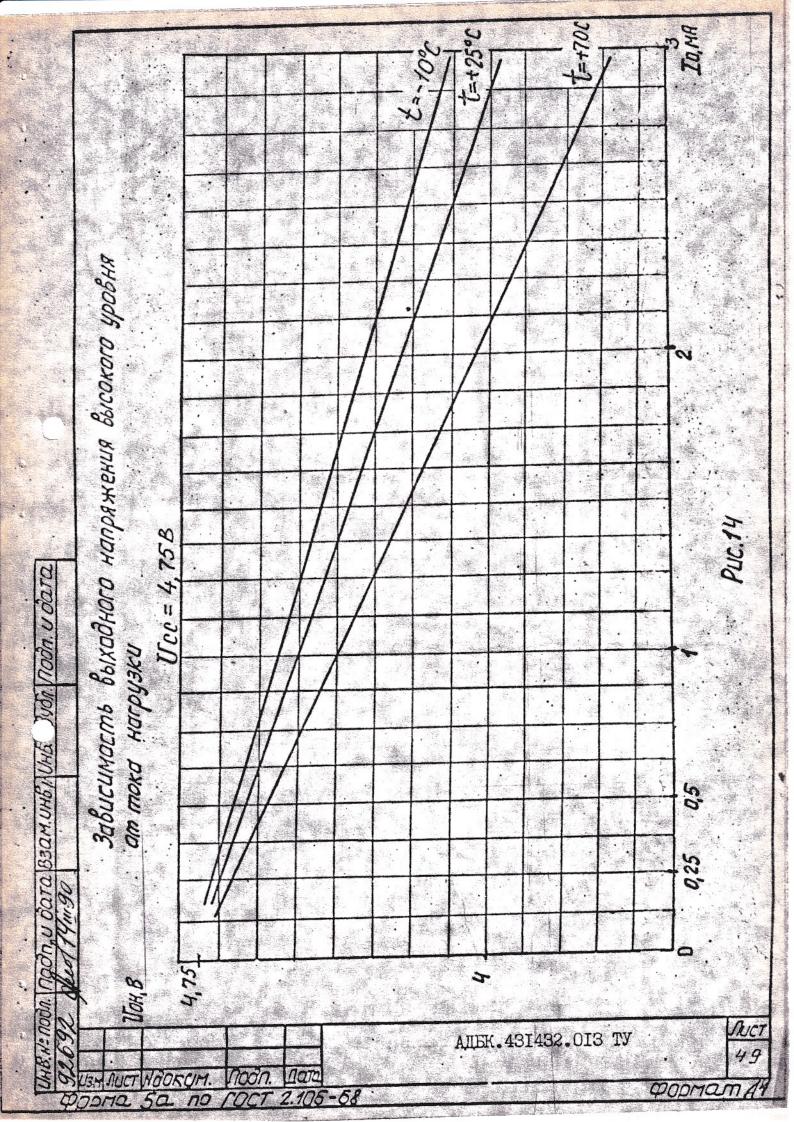
50 FORT 2.106-68

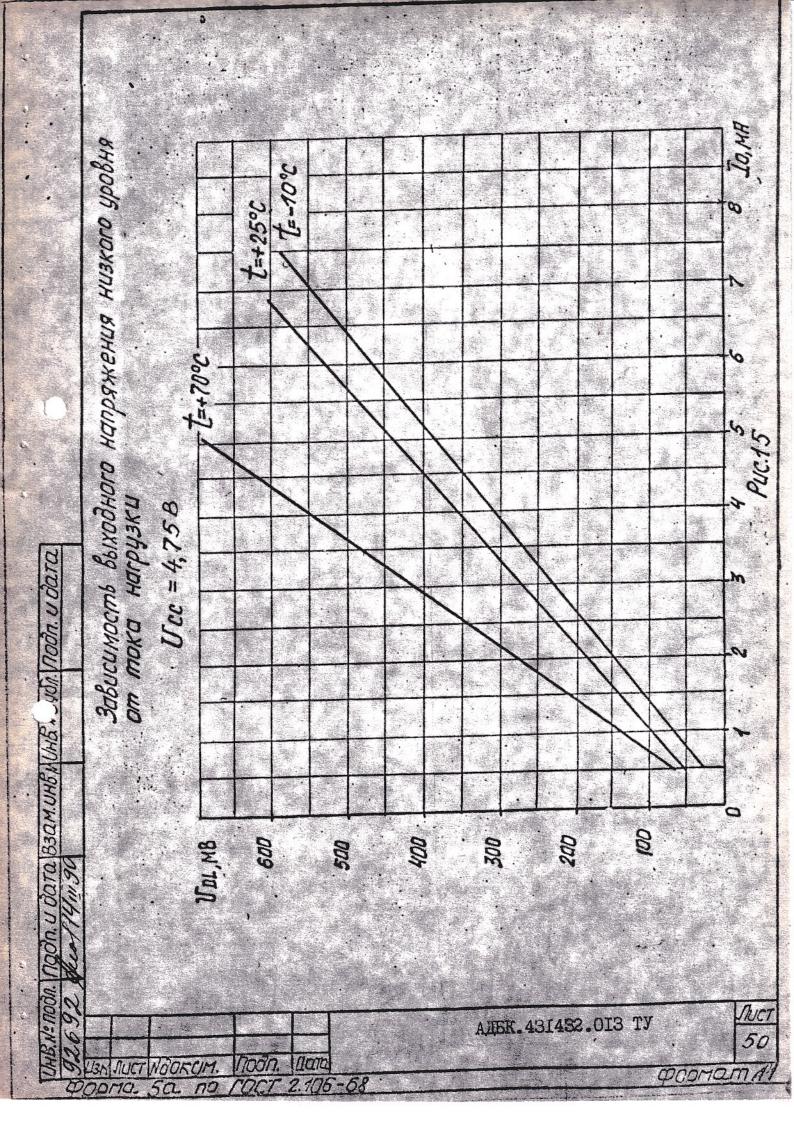
ОСФЕРНОГО ДАВЛЕНИЯ

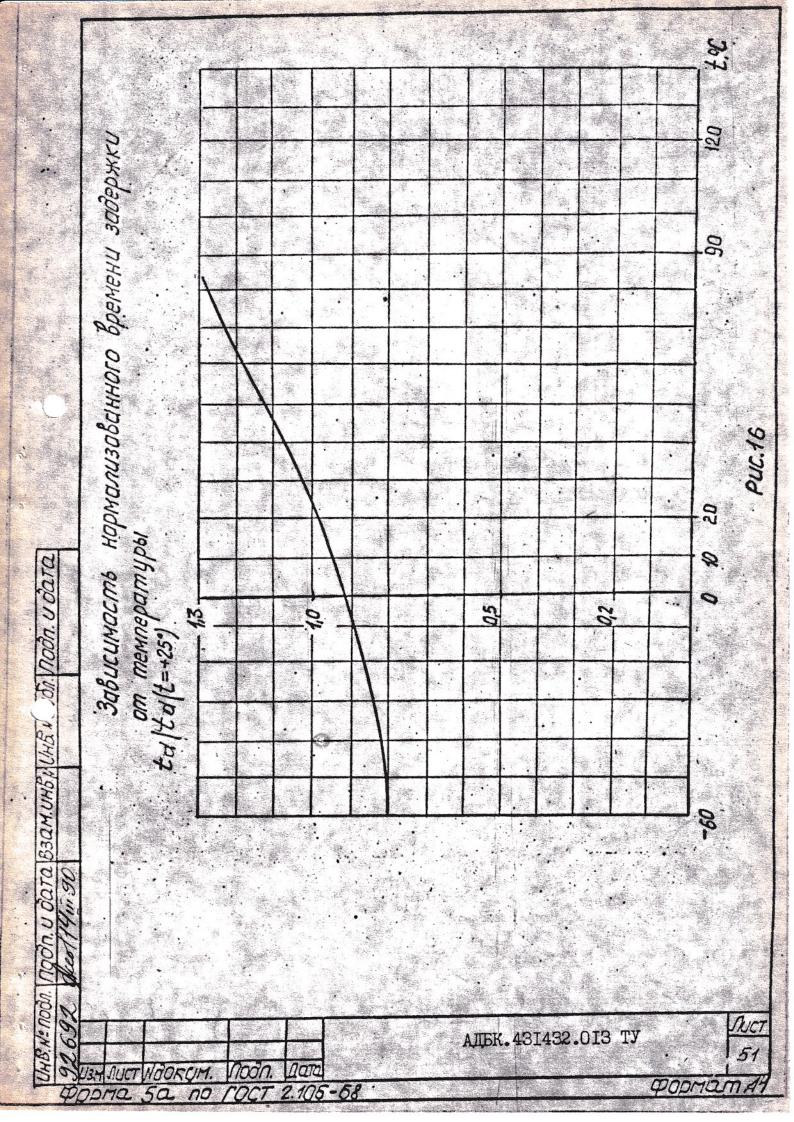
RI... R62 = 2,7 кОм \pm 20% U_{cc} = 5,25 B - 5% I - испытываемая микросхема

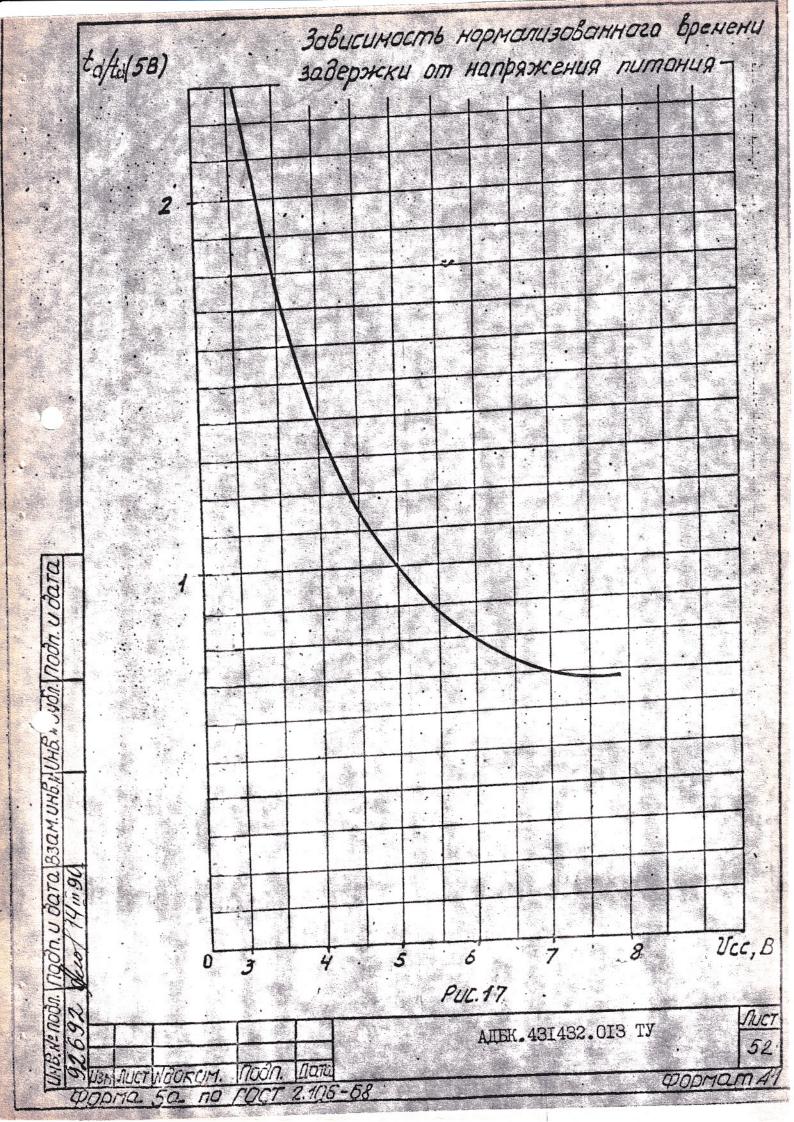

2 - измеритель тока

the same state of the same state of the same state of the same state of the same state of the same state of the	the state of the s		
ULH JUCT Nº BON	WM. Nodn.	Para	
		Carl Carl	

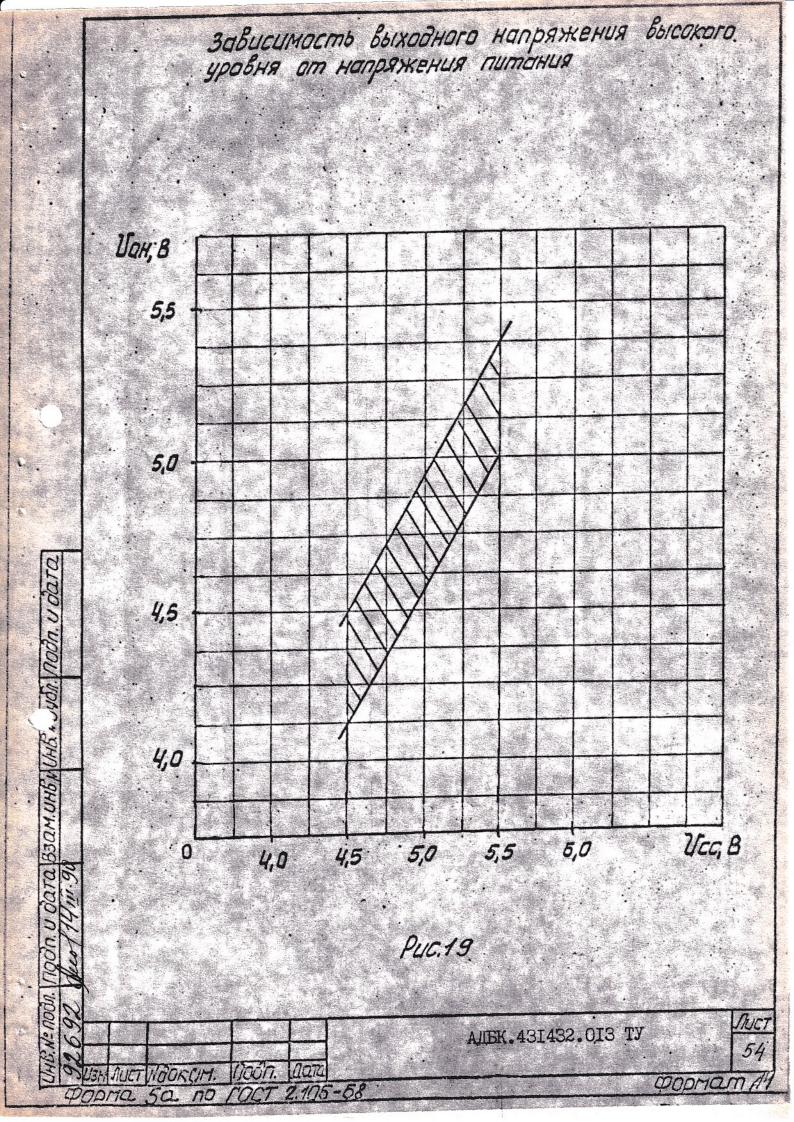

АДЕК, 431432.013 ТУ

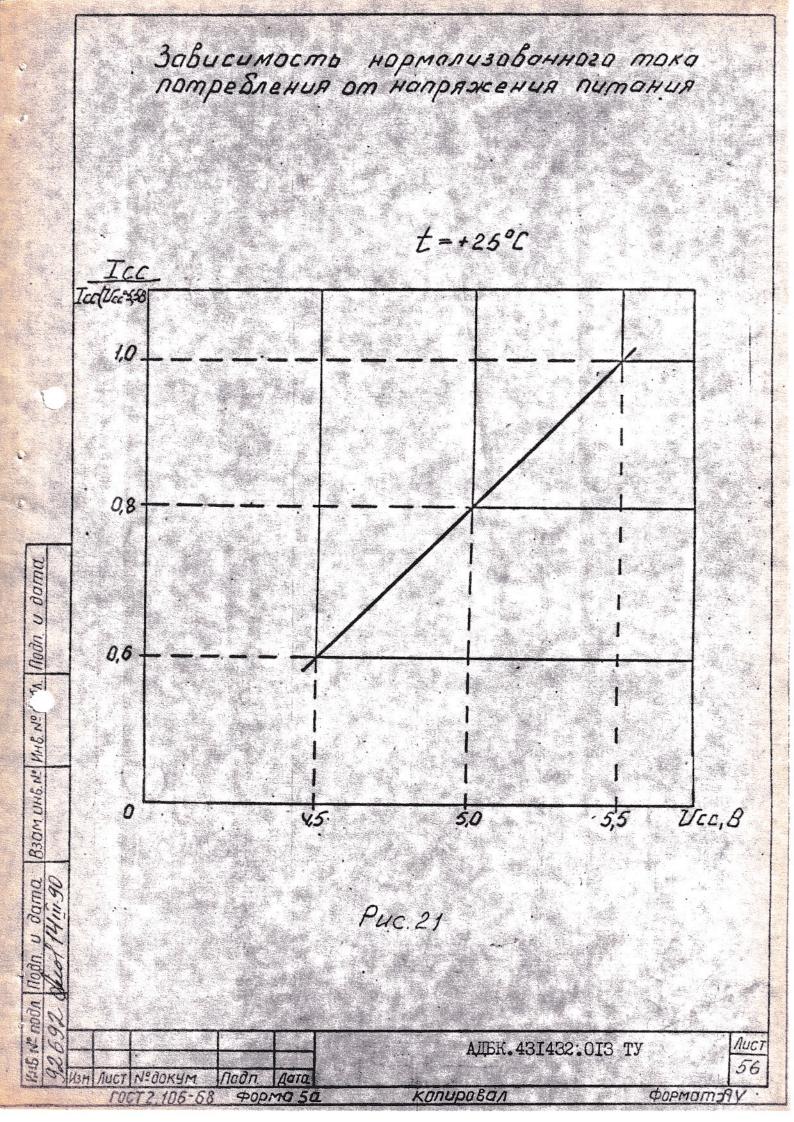

POPMam R3


<u>1001</u> 46




Зависимасть нармализаваннаго времени задержки от емкости нагрузки tofta(15np) 14 1,3 Noon. w nata 1,2 1,1 iodn. u dara Bzam.uHB.NUHB Cib 140 CL, nP n 120 30 50 100 20 PUC.13 nocu Πυςτ АДБК. 431432.013. ТУ. 48 Moon. Mote SUBMISUCT NOOKCIM. COPMOM AN CODDMA 50. NO FOCT 2.105-68





											<u> </u>	38 EX
											X.	
										X		
-									X			
<i>₽</i>								\mathbf{k}				
							\overline{Z}					
8. 1.						K						
	A CARLES .			Ø	Ζ							
				ent and				A State	100 A			
				K								
			K		*							
		X										
	Z											
					N=3	ю		#				

НАСТОЯЩЕВ ПРИЛОЖЕНИЕ К АДБК:491432.013 ТУ СОДЕРХИТ УТОЧНЕ-НИЯ ТУ ПРИ ПОСТАВКЕ МИКРОСХЕМ В БЕСКОРПУСНОМ ИСПОЛНЕНИИ НА ОБЩЕЙ ПЛАСТИНЕ (ДАЛЕЕ МИКРОСХЕМЫ) В СООТВЕТСТВИИ С РД 11 0723.

I. THI ENK IPHBEDEH B TABLI.

2: ТИПЫ (ТИПОНОМИНАЛЫ), ПОСТАВЛЯЕНЫХ МИКРОСХЕМ УКАЗАНЫ В ТАБЛ.Ів.

Э. УСЛОВНОЕ ОБОЗНАЧЕНИЕ МИКРОСХЕМ ПРИ ЗАКАЗЕ И В КОНСТРУК-Торской документации:

MUKPOCXENA KEISISXM2-4-XXX

AABK,431432.013 TY KAPTA 34KA3A XX3.414.XXX A

PA 11 0723.

Dorni

-

No

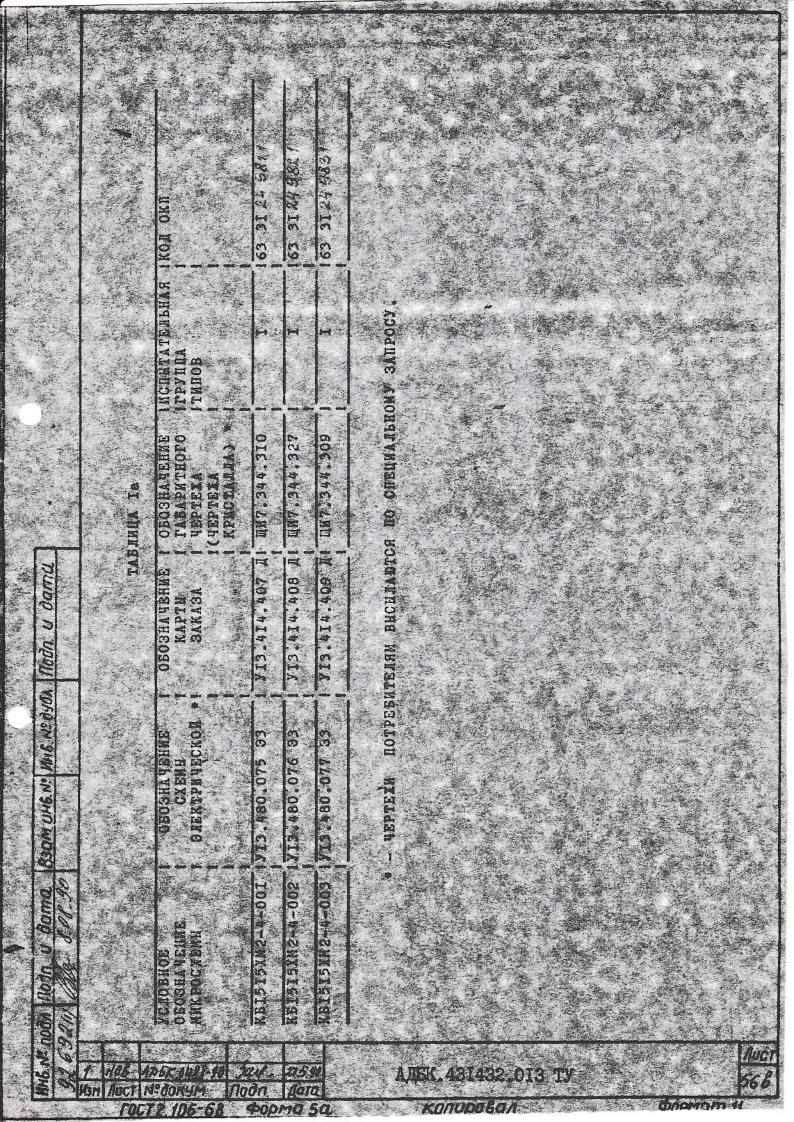
Hub.

B3DM ULAS Nº

4; ОБЩИЙ ВИД, ГАВАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ МИКРО-ОХЕМ, А ТАКИЕ УЧАСТКИ КОНТАКТИЙХ ПЛОЩАДОК, К КОТОРЫМ ДОПУСКАЕТСЯ ПРОИЗВОДИТЬ ПАЙКУ И СВАРКУ, УКАЗАНЫ НА ЧЕРТЕХАХ, ПЕРЕЧИСЛЕННЫХ В ТАБЛ. 1a

5: ОПИСАНИЕ ОБРАЗЦОВ ВНЕШНЕГО ВИДА МИКРОСХЕМ ЦИО:734:029 Д2 ПРИЛАГАЕТСЯ К ТУ:

6. ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРИ МИКРОСХЕМ ПРИ ПРИЕМКЕ И ПОСТАВКЕ COOTBETCTBYDT HOPMAN, ПРИВЕДЕННИЙ В ТАБЛ.2.


7. РЕХИМЫ ИЗМЕРЕНИЯ ЭЛЕКТРИЧЕСКИХ ЦАРАМЕТРОВ МИКРОСХЕМ В НОРМАЛЬНЫХ КЛИМАТИЧЕСКИХ УСЛОВИЯХ ПРИВЕДЕНЫ В ТАВЛ. 5 ТУ.

1 нов альт 048-90 доля 275 9 Изн Лист № вокум Лод о. Дого

АЛЫС. 431432. 013. ТУ

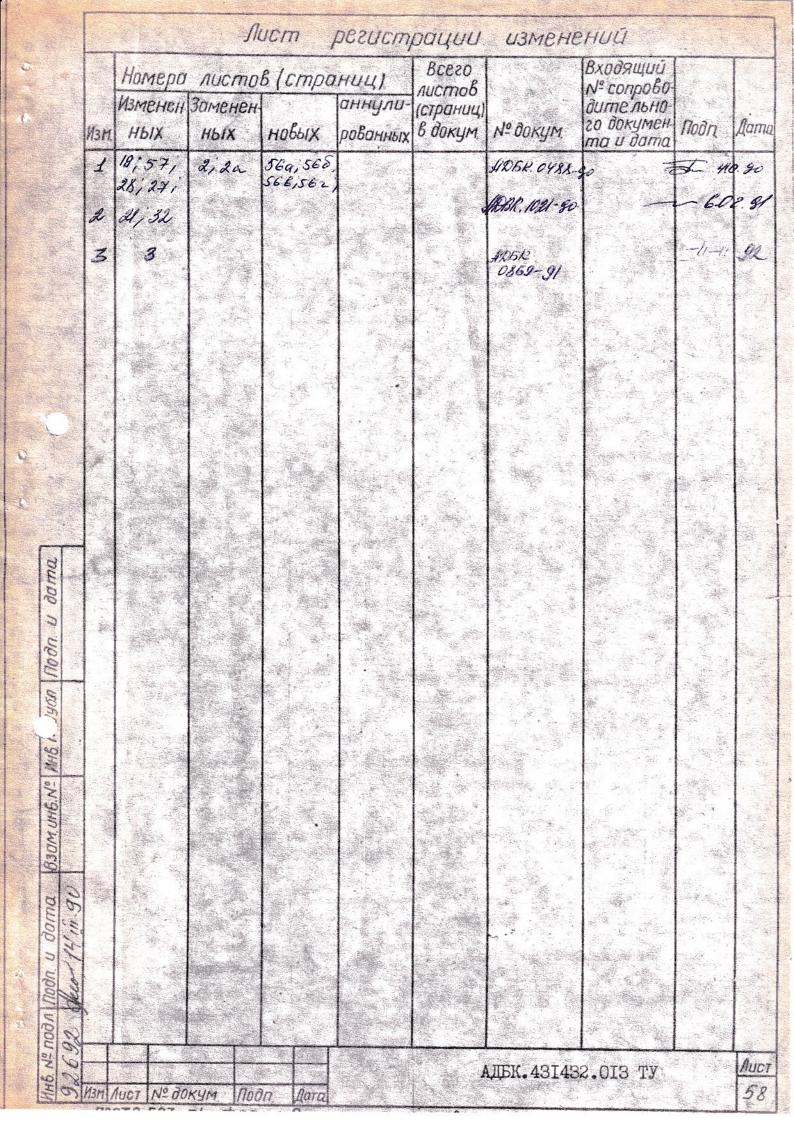
Southen Com

			1 но		Примача-
	РЕЗИМ ИЗМЕРЕНИЯ	thoe Lobosha – Lyehne L	I HE	HE	國家委員会
	Виходное напряжение низкого уровня, в при Ucc = 5B ± 5% ZoL = 1,6 мА	VOL		0,5	
	ВИХОДНОЕ НАПРЯХЕНИЕ ВЫСОКОРО УРОВНЯ, В ПРИ $Z/cZ = 5B \pm 5\%$ ZOH = 0,4 мА	<i>Vон</i>	1 4,0	And all the day because and a	
	ТОК ПОТРЕБЛЕНИЯ, «А ПРИ Исс = 58± 5%	IZec		0,8	
	ТОК УТЕЧКИ НА ВХОДЕ НИЗКОГО И Высокого уровней, ика при Исс = 58 ± 5%	ILIA ILIA ILIA	E-gella	5,0	
	ВИХОДНОМ ТОК В СОСТОЯНИИ "ВЫКЛЮЧЕНО" ПРИ НАПРЯХЕНИИ ВЫСОКОГО И НИЗКОГО УРОВНЕЙ ПРИ Исс = 58 ±5%	Iozu Iozi	1	5,0	17
	ВРЕМЯ ЗАДЕРІКИ, НС ПРИ 2/20 • 58 ± 5%	ŹD			2
	ПРИМЕЧАНИЯ: I: ПАРАМЕТРЫ КОНТРО В КАРТЕ ЗАКАЗА: 2: КОНКРЕТНЫЕ ЗНАЧЕ ПРИВОДЯТСЯ В КАР	ния врем	ени за	ДВР х КИ	
		State of the state of the state of the	14. 8 8 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
5- 6.08.90					

C одерхание

S

t.


0

- An

UHB Nº NOGI NOON U DOTA B30M UHBN UHBN BOD NOON U DOTA

	содержание	
		ЛИСТ
	I. ОБЦИЕ ПОЛОЖЕНИЯ	2
1 11	2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ)
	2.1. ТРЕБОВАНИЯ К КОНСТРУКЦИИ	5
	2:2: ТРЕБОВАНИЯ К ЭЛЕКТРИЧЕСКИМ ПАРАМЕТРАМ	
	И РЕЛИМАМ	6
	2.3. ТРЕБОВАНИЯ К УСТОИЧИВОСТИ ПРИ	
	механических воздействиях	8
	2:4: ТРЕБОВАНИЯ К УСТОЙЧИВОСТИ ЦРИ	
	КЛИМАТИЧЕСКИХ ВОЗДЕЙСТВИЯХ	8
	2.5. ТРЕБОВАНИЯ К НАДЕХНОСТИ	3 . And and and
	з. контроль качества и правила приемки	10
	зії. требования к обеспечению и контролю	
	КАЧЕСТВА МИКРОСХЕМ В ПРОЦЕССЕ	
	производства	0
	3.2. ПРАВИЛА ПРИЕМКИ	0
	з.з. методн контроля	7 3 1 1 1 1 1
	4: МАРКИРОВКА, УПАКОВКА ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ: 2	2
T T	А.І. МАРКИРОВКА	22
	the second second second second second second second second second second second second second second second s	
j i	4.2. УПАКОВКА	
	5. УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ	
2	6. CHPABOUHNE JAHHNE	:5
		26
1		
3	9. ПЕРЕЧЕНЬ ПРИЛАГАЕМЫХ ДОКУМЕНТОВ. Ссылочные нормативно-техницеские докушентег 10. ПЕРЕЧЕНЬ ОБОЗНАЧЕНИЙ ДОКУМЕНТОВ, НА КОТОРЫЕ	27
		28
		29-35
1		
	РИСУНКИ	36-56
	Приложение 560	2; 8, 8; 2
0		
-91		
1 m		
5		
63		
de		
5		
. Car	A THE ADT ADD ATD ATD	NUCT
20	АДБК.431432.013 ТУ	57
6	LISM JUCT Nº OOKSM. NOON. Data	
	400Ma 5a no roct 2.105-68	popmam 11

- Faller

Место для товарного знака предприятия изготовителя

нэтида

Nep6.

7004

Lotonmurvel

25.01.90

071

Rodn u dama

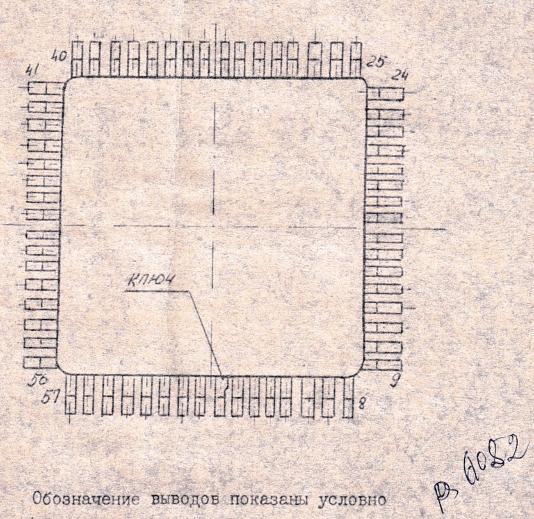
VOA

BBOM UHB Nº MHB.

Ind. 10

Bare skete

ugus. 480. 311


Микросхема КАІБІБХМ2

(указывается

регистрационный номер карты заказа)

ЭТИКЕТКА Микросхема интегральная КАІБІБХМ2 Универсальная вентильная матрица (УВМ) Климатическое исполнение УХЛ

Схема расположения выводов

Обозначение выводов показаны условно

the second	100								
Contraction of the second	100 U					ЩИЗ.480.311 ЭТ			
	ali a	Han Aucr	№ докум	Nadn	Lara				
3	VQV	Разраб	Киренний	Jught-	22194	A CARLER AND A CARLER AND A CARLER AND A CARLER AND A CARLER AND A CARLER AND A CARLER AND A CARLER AND A CARLE	Aum	Auom	Aucmob
2	00	<u>ПР06</u>	Repetice.	Eng	24.1.90	Микросхема	A	1	4
i i	No	PIIT	Vilunce o	01120	2419	интегральная КАІБІБХМ2			
	10	V H. KOHTP	YOR pola	yeaus	5.02.90	Этикетка		之条之	
-	E C	ymb.	SADAHOG.	10m	14.1.95	Ormeering	L.	Angel .	
	for	r 2 105-5	8 DOOMER 5			KADHOOKAA	and the second	CODDA	nm GU

Основные электрические параметры

HOPMA Буквенное Наименование пара-Примечание метра, единица измере соозначене He более ние менее ния, режим измерения Выходное напряжение низкого уровня, В 0,5 Voi $Vcc = 5B\pm 5\%$ при Tos = 1,6 MA Выходное напряжение высокого уровня, В VON 4,0 $Vcc = 5B\pm 5\%$ IDM Toy = 0,4 MA TOK потребления, мА Ice 0.8 Vry = 5B+5% при Ток утечки на входе THIN низкого и высокого 5 TLIH YDOBHA, MKA при Vec = 5B+5%Выходной ток в состоянии "Выключено" LOTH при напряжении высо-5 кого и низкого TOZL YPOBHA, MKA при Лес = 5В+5% Время задержки, нс td X при Исс = 5В+5% Примечание ж - Конкратные значения времени задержки приводятся в карте заказа. В карте заказа могут быть установлены другие динамические параметры с указанием метода контроля. AUCT WM3.480.3II 9T 2 MJUCT Nº OOKSM. NOON. Lan

POPMOLMA

Di

DAMA 50. NO [OCT 2.105-68

idn. v da.ra

Содержание драгоценных металлов в 1000 шт.микросхем:

золото Г.

серебро г.

Цветных металлов не содержится

Сведения о приемке

Микросхема интегральная КАІБІБХМ2 соответствует техническим условиям АДЕК. 431432.013 ТУ.

Место для - штампа ОТК

Место для штамна Государственной приемки

21

Место для штампа "Перепроверка произведена"

место для штампа ОТК

ISMJIUCT, Nº OOKYM. NOON. IION

PORMA. 50. NO LOCT 2.105-68

830MUHBWUHB

Место для штампа Государственной приемки

WM3.480.311 9T Dopmam.

AUCI

УТВЕРЕДАЮ ПРЕЛСТАВИТЕЛЬ ЗАКАЗЧИКА 4399 В.Г. ФЕДОТОВ

HHE

5725

YTBEPELIAK

ГЛАВНЫЙ ИНЕЕНЕР ПРЕДПРИНТИЯ п/я Р-6429 Гошв А.А.ПОПОВ "24" с. 1984г.

МИКРОСХЕМЫ БЕСКОРПУСНЫЕ МОДИФИКАЦИИ 4 Описание внешнего вида ШИО.734.029 Д2

中心にある

ГЛАРНЫЙ КОНСТРУКТОР ОКР I.A. WIPOKOB 1984r. In

I. OHPENENE N HASHAVEHNE

I.I. Настоящее описание внешнего вида распространяется на микросхемы интегральные бескорпусные модификации 4 и предназначено для ружоводства при проверке качества внешнего вида пластин на предприятии-изготовителе и на входном контроле у потребителя.

Описание высылается потребителю одновременно с техническими условиями на микросхемы.

2. TPEEOBAHUH K BHEMHENY BUDY ILLACTUH

2.1. Проверку внешнего вида пластин проводят визуальным осмотром под микроскопом с кратностью увеличения 50^х при прямом освещении объекта.

2.2. При проверке внешнего вида допускается следующее:

различные оттенки алкминиевых контактных площадок, кроме черного и коричневого:

сквозние царанини, отсекающие менее 1/4 контактной площадки; царалины и пустоты на металлизированных дорожках, уменьшающие се ширину менее чем на 1/2;

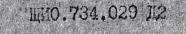
единичные несквозные парапины по защитному окислу;

нестравленные участки металлических покрытий, уменьшающие расстояния менее чем на I/З меллу двумя контактными площадками, между двумя любыми металлизированными дорожками, между контактной площадкой и металлизированной дорожкой;

остатки окисла и алюминия на доровках реза;

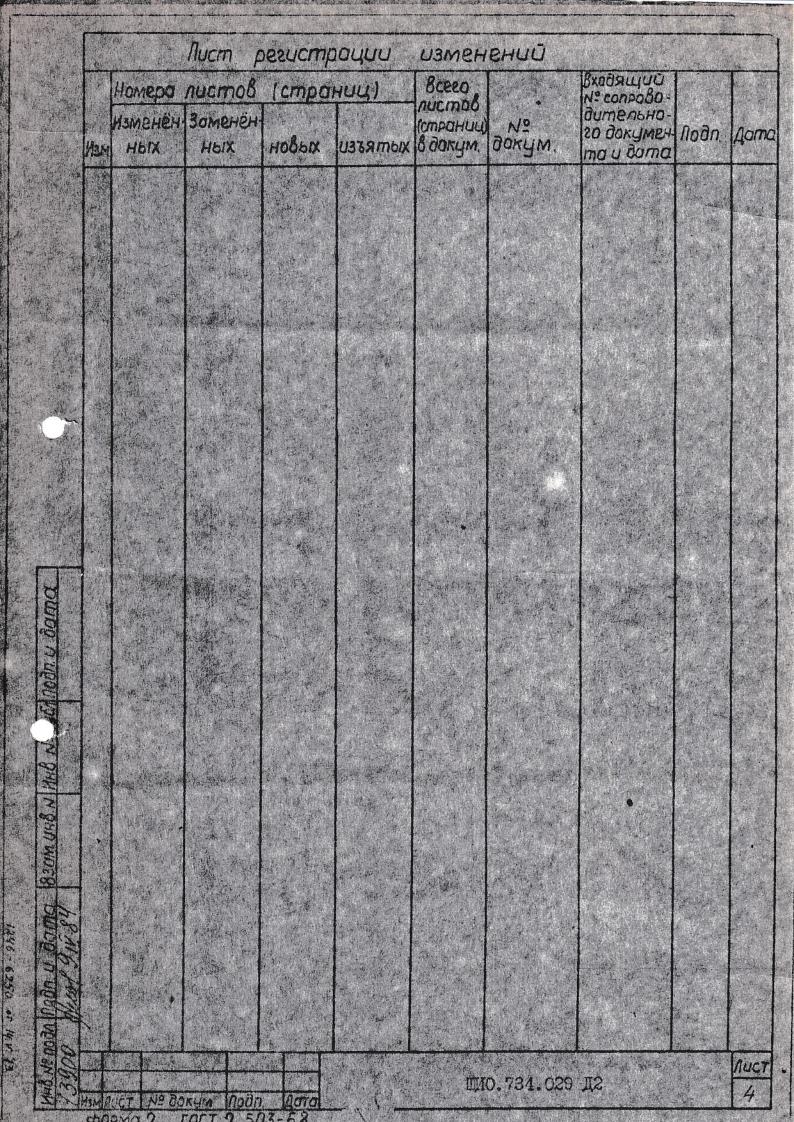
(idea

500								
in ton					ЩИО.734.029 Д2			
		NOONSH				to -		
31	203000	Шабанава	maly	6.07.13	Микросхемы бескорпусные	Aum.	AUCM	Nucmob
30	noob.	Jonarung	Jaks	18.01.87	Manpoorena occupationad	A	12	4
16	3 Constitution and and the state of the second state	WEPZONED 6	sules	2532	модификации 4			
- M	HROHIMP	hantow .	Asaft	40489	Описание внешнего вида	A starter	in the second second	
317	1.9mb.	a sugar	-Y	-	and the second second second second second second second second second second second second second second second		a series and	
Do	DMQ 5	TOCT 2.	106-6	18	Konupaban		QON	DMam II


различные оттенки защитного окисла;

несквозные проколы и царалины от игл зондовой установки до поверхности кристалла размеров, не превышаниям пирину выхолящей металлизированной дорожки:

церапины и сквозные следы от игл зондовой установки, уменьначение ширину металлизировачной дорожки в месте перехода в контактную плонацку не более, чем на 1/2 ширини дорожки;


различные оттенки обратной стороны поверхности пластин (контролируется визуально).

2.3. Контактние площалки должны быть чистыми и свободными от защитного окисла.

USMJUCT Nº OOKUM, NOON, Mara

