
Appendix A
CPU instruction Timing

A.1 Introduction
The execution time for an instruction depends on:

• The type of instruction executed

• The mode of addressing used

• The type of memory being referenced

In general, the total execution time is the sum of the base instruction fetch/execute time
plus the operand(s) address calculation/fetch time.

You can use the tables in this section to calculate the length of an instruction in terms of
microcycles (MC). Tables A-1 through A-8 list the standard and floating point instructions,
their op code listing, and execution times (MC). The "Execution M C" column specifies the
number of microcycles required to fetch/execute the base instruction. The R/W column
specifies the number of read microcycles (R) and write microcycles (W) in the Execution
MC column. Any remaining microcycles are non-I/O (NIO).

If the instruction involves the calculation/fetch of one or more operands, a reference
to a separate table (a source or destination table) is made in the last column. The
column is usually labeled "Table" or "Dest Table." The tables referenced are A-9, A-
10 through A-15, and A-16 through A-20: they are located at the end of the appendix.
The source/destination tables specify the number of microcycles the source/destination
calculation/fetch requires, and how many of these are read or write microcycles. As
before, any remaining microcycles are NIO.

The numbers contained in the tables are based on the assumptions that:

• A memory read must last a minimum of four CLK periods

• A memory write must last a minimum of eight CLK periods

• An NIO lasts four CLK periods (no DMA)

Any wait states caused by slower memory or a DMA transfer must be added to the total
instruction time. If wait states are required, the first wait state of a nonstretched read or
NIO cycle will last four clock periods and can continue in increments of two clock periods.
Further wait states for stretched cycles occur in increments of two clock periods.

Floating-point instruction execution times are given as a range. The actual execution time
will vary depending on the type of data being operated on.

The following examples illustrate how to use the tables.

A-1

CPU Instruction Timing

Example 1

How long does a MOV R0,@#2044 instruction last?

Step 1 From Table A-2, the execution time for the MOV base instruction is 1 MC,
or 4 CLK periods. This consists of one read and no write microcycles (R/W column).
Depending on the type of memory in the system, the microcycle may be stretched. If so,
the microcycle lasts at least 8 CLK periods and may be stretched thereafter in increments
of 2 CLK periods.

Step 2 To find the operand calculation/fetch time for the source operand (RO), refer to
Table A-9. As shown in Table A-9, a mode 0 register 0 calculate/fetch takes 0 MC. Note
that the operand is already available to the DCJ11 (in the register file).

Step 3 To find the operand calculation/fetch time for the destination operand (the
contents of memory location 2044), see Table A-12. Table A-12 specifies that a mode 3
register 7 calculate/fetch requires three microcycles (that is, one read microcycle and one
write microcycle). Note that the remaining microcycle is an NIO microcycle.

The type of memory in the system must be taken into account. If the read cycle is
stretched, the stretched cycle lasts at least 8 CLK periods and may be stretched thereafter
in increments of 2 CLK periods. The write microcycle lasts at least 8 CLK periods and
may be stretched in increments of 2 CLK periods.

Step 4 For a determination of the minimum time required, total up the microcycles. In
this example, it is 1 + 0 + 3, or 4 MC (16 CLK periods if no microcycle stretching occurs).

Example 2

The source and destination tables for floating point instructions show a negative number
in the microcycle column for certain mode 2 register 7 operations. For example, to
determine how long a CLRD 2000 instruction lasts, you can follow steps 1 through 3:

Step 2 As specified in Table A-8, the base instruction time for the CLRD instruction is 14
MC.

Step 2 From Table A-17, the calculation/fetch time for the operand (a mode 2 register 7
reference) is shown as (-1) under Double Precision. This means that you subtract 1 MC
from the base instruction time. However you add 1 MC for the memory write operation.
There are no memory read cycles.

Step 3 Total the microcycles:

14 - 1 + 1 = 1 4 MC minimum.

Note that this example assumes no cycle stretching.

A-2

CPU Instruction Timing

Table A- 1 Single Operand Instructions

Timing

Mnemonic Instruction
Op Code
Listing

Execution
MC R/W

Source
Table

Dest.
Table

CLR(B) Clear 0050DD 1 1/0 - A-12

COM(B) Complement (1's) 0051DD 1 1/0 - A-13

INC(B) Increment 0052DD 1 1/0 - A-13

DEC(B) Decrement 0053DD 1 1/0 - A-13

NEG(B) Negate (2's
complement)

0054DD 1 1/0 - A-13

TST(B) Test 0057DD 1 1/0 - A-13

Rotate and Shift

ROR(B) Rotate right 0060DD 1 1/0 - A-13

ROL(B) Rotate left 0061DD 1 1/0 - A-13

ASR(B) Arithmetic shift
right

0062DD 1 1/0 - A-13

SWAB Swap bytes 0003DD 1 1/0 - A-13

Multiple Precision

ADC(B) Add carry 0055DD 1 1/0 - A-13

SBC(B) Subtract carry 0056DD 1 1/0 - A-13

SXT Sign extend 0067DD 1 1/0 - A-12

Multiprocessing

TSTSET Test and set (low
bit interlocked)

0072DD 5 1/1 - A-13

WRTLCK Write interlocked 0073DD 4 1/1 - A-13

A-3

CPU Instruction Timing

Table A- 2 Double Operand Instructions

Timing

Mnemonic Instruction
Op Code
Listing

Execution
MC R/W

Source
Table

Dest.
Table

MOV(B) Move 01SSDD 1 1/0 A-9 A-13

CMP(B) Compare 02SSDD 1 1/0 A-9 A-13

ADD Add 06SSDD 1 1/0 A-9 A-13

SUB Subtract 16SSDD 1 1/0 A-9 A-13

Logical

BIT(B) Bit test (AND) 03SSDD 1 1/0 A-9 A-11

BIC(B) Bit clear 04SSDD 1 1/0 A-9 A-13

BIS(B) Bit set (OR) 05SSDD 1 1/0 A-9 A-13

Register

MUL Multiply 0704SS 22

(Notes 5, 11)

1/0 - A-10

DIV Divide 071RSS 34

(Notes 6, 7, 12)

1/0 - A-10

ASH Shift automati­
cally

072RSS 4 1/0 - A-10

ASHC Arithmetic shift
combined

073RSS 5

(Note 13)

1/0 A-10

XOR Exclusive (OR) 074RDD 1 1/0 - A-10

A-4

CPU Instruction Timing

Table A- 3 Branch Instructions

Timing

Mnemonic Instruction
Branch Op
Code Listing

Branch
Not
Taken
MC

Branch
Taken
R/W MC R/W

BR Branch (uncondi­
tional)

000400 2 1/0 4 2/0

BNE Br if not equal (to
0)

001000 2 1/0 4 2/0

BEQ Br if equal (to 0) 001400 2 1/0 4 2/0

BPL Br if plus 100000 2 1/0 4 2/0

BMI Br if minus 100400 2 1/0 4 2/0

BVC Br if overflow is
clear

102000 2 1/0 4 2/0

BVS Br if overflow is
set

102400 2 1/0 4 2/0

BCC Br if carry is clear 103000 2 1/0 4 2/0

BCS Br if carry is set 103400 2 1/0 4 2/0

Signed Conditional Branches

BGE Br if greater or
equal (to 0)

020000 2 1/0 4 2/0

BLT Br if less than (0) 002400 2 1/0 4 2/0

BGT Br if greater than
(0)

003000 2 1/0 4 2/0

BLE Br if less or equal
(0)

003400 2 1/0 4 2/0

A-5

CPU Instruction Timing

Table A-3 (Cont.) Branch Instructions

Unsigned Conditional Branches

BHI Br if higher 101000 2 1/0 4 2/0

BLOS Br if lower or
same

101400 2 1/0 4 2/0

BHIS Br if higher or
same

103000 2 1/0 4 2/0

BLO Br if lower 103400 2 1/0 4 2/0

SOB Subtract 1 and
branch (if not
equal to 0)

077RNN 3 1/0 5 2/0

Table A-4 Jump and Subroutine

Timing

Mnemonic Instruction
Op Code
Listing

Execution
MC R/W Dest. Table

JMP Jump 0001DD - - A-15

JSR Jump to subroutine 004RDD - - A-15 (Note 4)

RTS Return from
subroutine

00020R 5 3/0 - (Note 14)

MARK Stack cleanup 0064NN 10 3/0

A-6

CPU Instruction Timing

Table A-5 Trap and Interrupt Instructions

Timing

Mnemonic Instruction
Op Code
Listing

Execution
MC R/W

EMT Emulator trap 104000-
104377

20 4/2

TRAP Trap 104400-
104777

20 4/2

BPT Breakpoint trap 000003 20 4/2

IOT Input/output trap 000004 20 4/2

RTI Return from interrupt 000002 9 4/0

RTT Return from interrupt 000006 9 4/0

Table A-6 Condition Code Operators

Timing

Mnemonic Instruction
Op Code
Listing

Execution
MC R/W

CLC Clear C 000241 3 1/0

CLV Clear V 000242 3 1/0

CLZ Clear Z 000244 3 1/0

CLN Clear N 000250 3 1/0

CCC Clear all CC bits 000257 3 1/0

SEC Set C 000261 3 1/0

SEV Set V 000262 3 1/0

SEZ Set Z 000264 3 1/0

SEN Set N 000270 3 1/0

SCC Set all C bits 000277 3 1/0

A-7

CPU Instruction Timing

Table A-7 Miscellaneous Instructions

M nemonic Instruction
Op Code
Listing

Execution
MC

Timing

R/W Dest. Table

HALT Halt 000000 - -

WAIT Wait for interrupt 000001 - -

RESET Reset external bus 000005 - -

NOP (No operation) 000240 3 1/0 -

SPL Set priority level to N 7 1/0 -

MFPI Move from previous
instr space

00023N 5 1/1 A-10

MTPI Move to previous instr
space

0056DD 3 2/0 A-12

MFPD Move from previous
data space

1065SS 5 1/1 A-10

MTPD Move to previous data
space

1066DD 3 2/0 A-12

MTPS Move byte to PSW PS 1064SS 8 1/0 A-10

MFPS Move byte from PSW
PS

1067DD 1 1/0 A-12

MFPT Move from processor 000007 2 1/0 -

CSM Call to supervisor
mode

0070DD 28 3/3 A-10

A-8

CPU Instruction Timing

Table A-8 Floating-Point Instructions

Timing

Mnemonic Instruction
Op Code
Listing Min

Execution MC
Non-Mode 0
Typical Max Table

ABSD Make absolute 1706 fdst 23 24 A-18

ABSF Make absolute 1706 fdst 19 20 A-18

ADDD Add 172 (AC)
fsvc

41 48 119 A-16

ADDF Add 172 (AC)
fsvc

31 35 102 A-16

CFCC Copy Floating
Condition Codes

170000 5 5 -

CLRD Clear 1704 fdst 14 14 A-17

CLRF Clear 1704 fdst 12 12 A-17

CMPD Compare 173 (AC +
4)

24 25 A-17

CMPF Compare 173 (AC +
4)

18 19 A-16

DIVD Divide 174 (AC +
4)

160 167 A-16

DIVF Divide 174 (AC +
4)

59 63 A-16

LDCDF Ld & C from D to
F

177 (AC +
4)

24 26 A-16

LDCFD Ld & C from F to
D

177 (AC +
4)

20 21 A-16

LDCID Ld & C Integer to
D

177 (AC)
src

31 42 A-19

LDCIF Ld & C Integer to
F

177 (AC)
src

26 36 A-19

LDCLD Ld & C Long
Integer to D

177 (AC)
src

31 42 A-19

LDCLF Ld & C Long
Integer to F

177 (AC)
src

26 44 A-19

LDD Load 172 (AC +
4)

16 17 A-16

A-9

CPU Instruction Timing

Table A-8 (Cont.) Floating-Point Instructions

Mnemonic Instruction
Op Code
Listing Min

Timing

Execution MC
Non-Mode 0
Typical Max Table

LDEXP Load Exponent 176 (AC +
4)

17 18 A-19

LDF Load 172 (AC +
4)

12 13 A-19

LDFPS Load FPP Program
Status

1701 src 6 6 A-19

MODD Multiply and
Separate

171 (AC +
4)

202 217 268 A-16

MODF Integer and
Fraction

171 (AC +
4)

82 94 115 A-16

MULD Multiply 171 (AC)
fsrc

165 173 A-16

MULF Multiply 171 (AC)
fsrc

56 61 A-16

NEGD Negate 1707 fdst 22 23 A-18

NEGE Negate 1707 fdst 18 19 A-18

SETD Set Floating
Double Mode

170011 6 6 -

SETF Set Floating Mode 170001 6 6 -

SETI Set Integer Mode 170002 6 6 -

SETL Set Long Integer
Mode

170012 6 6 -

STCDF St & C from D to
F

176 (AC)
fdst

17 20 A-17

STCD1 St & C from D to
Integer

176 (AC)
fdst

26 38 A-20

STCDL St & C from D to
Long Integer

176 (AC)
fdst

26 54 A-20

STCFD St & C from F to
D

176 (AC)
fdst

19 20 A-17

STCFI St & C from F to
Integer

175 (AC +
4)

23 35 A-20

A-10

CPU Instruction Timing

Table A- 8 (Cont.) Floating-Point Instructions

Mnemonic Instruction
Op Code
Listing Min

Timing

Execution MC
Non-Mode 0
Typical Max Table

STCFL St & C from F to 175 (AC + 23 51 A-20
Long Integer 4)

STD Store 174 (AC) 12 12 A-17
fdst

STEXP Store Exponent 175 (AC) 16 16 A-20
dst

STF Store 174 (AC) 8 8 A-17
fdst

STFPD Store FPP 1702 dst 9 9 A-20
Program Status

STST Store FPP Status 1703 dst 7 7 A-20

SUBD Subtract 173 (AC) 47 55 122 A-16
fsrc

SUBF Subtract 173 (AC) 37 41 104 A-16
fsrc

TSTD Test 1705 fdst 11 12 A-16

TSTF Test 1705 fdst 9 10 A-16

Table A-9 Source Address Times: All Double Operand

Source M ode Source Register M icrocode Cycles Read Memory Cycles

0 0-7 0 0
1 0-7 2 1
2 0-6 2 1
2 7 1 1
3 0-6 4 2
3 7 3 2
4 0-6 3 1
4 7 6 2 (Note 1)
5 0-6 5 2
5 7 8 3 (Note 1)
6 0-7 4 2
7 0-7 6 3

A-11

CPU Instruction Timing

Table A- 10 Destination Address: Read-Only Single Operand

Destination
M ode

Destination
Register

M icrocode
Cycles Read Memory Cycles

0 0-7 0 0
1 0-7 2 1
2 0-6 2 1
2 7 1 1
3 0-6 4 2
3 7 3 2
4 0-6 3
4 7 7 2 (Note 2)
5 0-6 5 2
5 7 9 3 (Note 3)
6 0-7 4 2
7 0-7 6 3

Table A-11 Destination Address Times: Read-Only Double Operand

Destination Destination M icrocode
M ode Register Cycles Read Memory Cycles

0 0-7 0 0
1 0-7 3 1
2 0-6 3 1
2 7 2 1
3 0-6 5 2
3 7 3 2
4 0-6 4 1

7 8 2 (Note 2)
5 0-6 6 2
5 7 10 3 (Note 3)
6 0-7 5 2
7 0-7 7 3

A-12

CPU Instruction Timing

Table A-12 Destination Address Times: Write-Only

Destination
M ode

Destination
Register

M icrocode
Cycles

Memory
Read

Cycles
Write

0 0-6 0 0 0
0 7 5 1 0
1 0-6 2 0 1
1 7 6 1 1
2 0-6 2 0 1
2 7 6 1 1
3 0-6 4 1 1
3 7 3 1 1
4 0-6 3 0 1
4 7 7 1 1
5 0-6 5 1 1
5 7 9 2 1
6 0-7 4 1 1
7 0-7 6 2 1

Table A-13 Destination Address Times: Read Modify Write

Destination Destination M icrocode M emory Cycles
M ode Register Cycles Read Write

0 0-6 0 0 0
0 7 5 1 0
1 0-6 3 1
1 7 7 2
2 0-6 3 1 1
2 7 7 2 1
3 0-6 5 2 1
3 7 4 2 1
4 0-6 4 1 1
4 7 8 2 1 (Note 2)
5 0-6 6 2 1
5 7 10 3 1 (Note 3)
6 0-7 5 2 1
7 0-7 7 3 1

A-13

CPU Instruction Timing

Table A- 14 Destination Address Times: JMP

Destination
M ode

Destination
Register

M icrocode
Cycles

Memory
Read

Cycles
Write

1 0-7 4 2 0
2 0-7 6 2 0
3 0-7 5 3 0
4 0-7 5 2 0
5 0-7 6 3 0
6 0-6 6 3 0
6 7 5 3 0
7 0-7 7 4 0

Table A- 15 Destination Address Times: JSR

Destination
M ode

Destination
Register

M icrocode
Cycles

Memory
Read

Cycles
Write

1 0-7 9 2 1
2 0-7 10 2 1
3 0-6 10 3 1
3 7 9 3 1
4 0-7 10 2 1
5 0-7 11 3 1
6 0-6 10 3 1
6 7 9 3 1
7 0-7 12 4 1

A-14

CPU Instruction Timing

Table A-16 Floating Source 1-7

Microcode
Mode
Single Precision

Memory
Register

Memory
Cycles Read Write

1 0-7 3 2 0
2 0-6 3 2 0
2 7 1 1 0
3 0-6 4 3 0
3 7 3 3 0
4 0-7 4 2 0
5 0-7 5 3 0
6 0-7 4 3 0
7 0-7 6 4 0

Double Precision

1 0-7 5 4 0
2 0-6 5 4 0
2 7 0 (Note 15) 1 0
3 0-6 6 5 0
3 7 5 5 0
4 0-7 6 4 0
5 0-7 7 5 0
6 0-7 6 5 0
7 0-7 8 6 0

A-15

CPU Instruction Timing

Table A-17 Floating Destination Modes 1-7

Microcode
Mode
Single Precision

Memory
Register

Memory
Cycles Read Write

1 0-7 3 0 2
2 0-6 3 0 2
2 7 1 0 1
3 0-6 4 1 2
3 7 3 1 2
4 0-7 4 0 2
5 0-7 5 1 2
6 0-7 4 1 2
7 0-7 6 2 2

Double Precision

1 0-7 5 0 4
2 0-6 5 0 4
2 7 (-1) (Note 15) 0 1
3 0-6 6 1 4
3 7 5 1 4
4 0-7 6 0 4
5 0-7 7 1 4
6 0-7 6 1 4
7 0-7 8 2 4

A-16

CPU Instruction Timing

Table A- 18 Floating Read-Modify-Write Modes 1-7

Microcode
Mode
Single Precision

Memory
Register

Memory
Cycles Read Write

1 0-7 5 2 2
2 0-6 5 2 2
2 7 1 (Note 15) 1 1
3 0-6 6 3 2
3 7 5 3 2
4 0-7 6 2 2
5 0-7 7 3 2
6 0-7 6 3 2
7 0-7 8 4 2

Double Precision

1 0-7 9 4 4
2 0-6 9 4 4
2 7 (-2) (Note 15) 1 1
3 0-6 10 5 4
3 7 9 5 4
4 0-7 10 4 4
5 0-7 11 5 4
6 0-7 10 5 4
7 0-7 12 6 4

A-17

CPU Instruction Timing

Table A-19 Integer Source Modes 1-7

Microcode
Mode
Integer

Memory
Register

Memory
Cycles Read Write

1 0-7 2 1 0
2 0-6 2 1 0
2 7 0 (Note 15) 1 0
3 0-6 3 2 0
3 7 2 2 0
4 0-7 3 1 0
5 0-7 4 2 0
6 0-7 3 2 0
7 0-7 5 3 0

Long Integer

1 0-7 4 2 0
2 0-6 4 2 0
2 7 0 (Note 15) 1 0
3 0-6 5 3 0
3 7 4 3 0
4 0-7 5 2 0
5 0-7 6 3 0
6 0-7 5 3 0
7 0-7 7 4 0

A-18

CPU Instruction Timing

Table A-20 Integer Destination Modes 1-7

M icrocode
M ode

Integer

Memory
Register

Memory
Cycles Read Write

1 0-7 2 0 1
2 0-6 2 0 1
2 7 2 0 1
3 0-6 3 1 1
3 7 2 1 1
4 0-7 3 0 1
5 0-7 4 1 1
6 0-7 3 1 1
7 0-7 5 2 1

Long Integer

1 0-7 4 0 2
2 0-6 4 0 2
2 7 2 0 1
3 0-6 5 1 2
3 7 4 1 2
4 0-7 5 0 2
5 0-7 6 1 2
6 0-7 5 1 2
7 0-7 7 2 2

A.2 Source and Destination Table Notes

1. Subtract 2 MC and 1 read if both source and destination modes autodecrement PC, or
if write-only or read-modify-write mode 07 or 17 is used.

2. Read-only and read-modify-write destination mode 47 references actually perform 3
READ operations. For bookkeeping purposes, one of the reads is accounted for in the
execute, fetch timing.

3. READ-ONLY and READ-MODIFY-WRITE destination mode 57 references actually
perform 4 READ operations. For bookkeeping purposes, one of the READs is
accounted for in the EXECUTE, FETCHING TIMING.

4. Subtract 1 MC if the link register is PC.

5. Add 1 MC if the source operand is negative.

6. Subtract 1 MC if the source mode is not 0.

a. Add 1 MC if the quotient is even.

b. Add 2 MC if overflow occurs.

c. Add 5 MC and 1 read if the PC is used as a destination register, but only if source
mode 47 or 57 is not used.

7. Add 1 MC per shift.

A-19

CPU Instruction Timing

8. Add 1 MC if source operand < 1 5:6 > is not 0.

9. Subtract 1 MC if one shift only.

10. Add 4 MC and 1 read if the PC is used as a destination register, but only if source
mode 47 or 57 is not used.

11. Divide by zero executes in 5 MC (see Note 6).

12. Timing for no shift. Add 1 MC if a left shift. (Notes 8, 9, 11 apply.) Add 2 MC for a
right shift. (Notes 8, 10, 11 apply.)

13. Add 1 MC if a register other than R7 is used.

14. Mode 27 references only access single-word operands. The execution time listed has
been compensated in order to computer the total execution time accurately.

A-20

Appendix D
Floating-Point Instruction Timing

Since the FPJ11 is a coprocessor operating in parallel with the J-ll chip set, the calculation
of floating-point instruction times for J-l l systems (using the FPJ11 option) must take this
parallel processing into account.

Part Definition

FPJ11 cycle

J-ll nonstretched cycle

J-11 read cycle

Two dock periods (110 ns at 18 MHz)

Two FPJ11 cycles (220 ns at 18 MHz)

J-ll nonstretched cyde if cache hit. Dependent on read access
time of system if cache miss. The minimum is two J-ll
nonstretched cycles, after which the J-ll stretches in half-cycle
increments until MCONT is asserted.

J-ll write cycle

Instruction Decode

Address Calculation Time

Argument Transfer Time

INPR (FEATEMP, TEMP)

Dependent on write access time of system (two J-ll cycles + half
cydes until MCONT).

A decode/prefetch cycle followed by a MOV microinstruction
that allows the FPJ11 to assert DMR prior to the start of the
next microinstruction (INPR for REG mode). This time equals
two nonstretched cycles if the prefetch is a cache hit; otherwise
nonstretched plus one read cycle.

J-ll time required to calculate the address of the operand. This
time is dependent on the addressing mode of the instruction,
the frequency of the system clock, and whether any indirect data
required is present in the cache (see Table D-1).

J-ll time required to load or store floating-point operands. This
time is one nonstretched cycle (address relocation μcycle) plus
one read cycle per 16-bit word read from memory for load class
instructions, or one nonstretched plus one write cycle per 16-bit
word to memory for store class instructions.

J-ll support code microinstruction execute for all FPJ11
instructions. Moves the PC of the previous FPJ11 instruction to a
TEMP register in case that instruction resulted in a floating-point
exception. If the FPJ11 is still executing the previous instruction
when the J-ll reaches its INPR microinstruction, the FPJ11
asserts STALL causing the J-ll INPR μcycle to stretch. The
J-ll then waits for the FPJ11 to deassert STALL, signaling the
system interface to assert MCONT before executing the next
microinstruction (OUTR).

D-1

Floating-Point Instruction Timing

Part Definition

WAIT J-ll time waiting for the completion by the FPJ11 of the previous
FP instruction. For load class or REG mode instructions, the time
from when the J-11 INPR cycle stretches at the trailing edge of
male until the FPJ11 deasserts STALL. This time equals zero if a
stall was not required or if the FPJ11 deasserted the stall signal
after the INPR cycle began but prior to the trailing edge of male.
Although the wait time for the latter case is zero, RESYNC time
is required. For store class instructions the wait time equals the
time between the assertion of SCTL (that is, when the system
interface is ready to execute the first write cycle of an FP store)
and the assertion of FPA-RDY (data ready) by the FPJ11.

RESYNC For load class and REG mode instructions the time required
to continue a stretched INPR. This is the time for the system
interface to recognize the deassertion of STALL and assert
MCONT, plus the time required for the J-ll to synchronize
MCONT and advance to the next microinstruction. Store class
instructions normally do not have RSYNC time since the J-ll is
waiting in a stretched write cycle and the continuation time is
part write cycle.

However, if the FPJ11 is executing a previous MODF/D or DIVD,
the FPJ11 will assert STALL in order to stretch a non-I/O cycle
prior to the first bus write. This allows the system interface to
service DMA, thus limiting the worst case DMA latency when
waiting for FPJ11 output. In this case, a wait and RESYNC
time associated with the stretched non-I/O cycle is added to the
effective execution time of the store class instruction.

OUTR (PC,FEATEMP), Last J-ll support microinstruction unless there is an FPE from the
TESTPLA FPE previous FP instruction. Saves address of PC in FEATEMP.

PRDC SYNC Time required by FPJ11 to decode FP instruction and begin
execution after receiving PRDC. This time equals two or three
FPJ11 cycles depending upon synchronization. PRDC SYNC is
not added to FPJ11 instruction execution times when the FPJ11 is
executing a previous FP instruction at the assertion of PDRC.

Floating-Point Execution Time Time required by FPJ11 to complete an FP instruction once it has
received all arguments. For store class instructions, floating-point
execution time includes the time from the start of the instruction
until the FPJ11 asserts FPA-RDY, indicating the first 16-bit word
is available for output (see Table D-2).

Effective Execution Time Total J-ll time required to execute an FP instruction.

Load class Instruction Decode + Address Calculation + Argument Transfer
+ INPR + WAIT + RSYNC + OUTR

REG mode Instruction Decode + INPR + WAIT + RSYNC + OUTR

Store class Instruction Decode + Address Calculation + INPR + Argument
Transfer + WAIT + OUTR

D-2

Floating-Point Instruction Timing

Table D-2 shows floating-point instruction

Mode Load Class Store Class

0 0 0

1 3 3

2 3 2

3 3 + RD1 2 + RD

4 4 4

5 3 + RD 3 + RD

6 3 + RDI2 2 + RDI

7 3 + RDI + RD 3 + RDI + RD

27 2 2

37 2 + RDI 2 + RDI

67 3 + RDI 2 + RDI

77 4 + RDI + RD 4 + RDI + RD

1RD =

2RD1 =

J-ll Read Cycle

J-ll Istream Request

Table D-1 shows address calculation times.
times.

Table D-1 Address Calculation Times

D-3

Floating-Point Instruction Timing

Table D- 2 FPJ11 Instruction Times

Instruction

Min

Cycles

Typ

Cycles

Max

Cycles

Stretch

Cycles1

18 M Hz2

Typ (μs)

ADDF/SUBF 7 9 19 5 1.0

ADDD/SUBD 7 9 30 5 1.0

MULF 15 15 16 11 1.7

MULD 26 26 27 22 2.9

DIVF 17 24 30 25 2.7

DIVD 33 48 62 57 5.4

MODF 28 34 43 15 3.7

MODD 39 45 71 26 5.0

CMPF/D 3 4 6 2 0.4

LDF/D 3 3 3 0 0.3

LDEXP 2 3 2 0 0.2

LDCIF/D 10 10 10 3 1.1

LDCLF/D 10 10 10 3 1.1

LDCFD 4 4 4 1 0.4

LDCDF 4 4 8 1 0.4

STF/D 3 3 3 0 0.3

STCFI 8 10 13 1 1.1

STCFL 8 12 16 1 1.3

STCFD 4 4 4 0 0.4

STCDF 6 6 6 1 0.7

STEXP 5 5 5 0 0.6

TSTF/D, LDFPS
STFPS, CFCC, SET

3 3 3 0 0.3

ABSF/D, NEGF/D 4 4 5 0 0.4

1Stretch cycles indicate the number of cycles out of max cycles that a data dependent stretch of one
additional cycle could occur with probability less than 1 percent for each additional cycle.

218 MHz = 111 ns Cyde

Floating-Point Instruction Timing

Load class instructions require input data and deposit results to the destination FP
accumulator. REG mode instructions are FP accumulator to FP accumulator.

Execution of a load class FP instruction by the FPJ11 occurs in parallel with J- ll operation
and can be overlapped as shown in the following flow.

J-ll FPJ11

Load class instruction is prefetched.
This occurs during previous instruction
execution

Instruction Decode PRDC SYNC
Prefetch next instruction

Address Calculation

Argument Transfer FPJ11 loads operands

INPR FPJ11 execution starts

WAIT if any

RSYNC if any

OUTR

Decode next instruction

FPJ11 only stalls if next instruction is FP and REG
mode. The FPJ11 can overlap the loading of operands
for subsequent load class instructions.

FPJ11 execution unit done

Store class instructions can be overlapped by the J-11 as the FPJ11 will complete a
previously started load class or REG mode instruction and then continue to the store
instruction. Execution of the store class instruction must be completed before the result
can be stored in memory, thus eliminating further parallel processing for store class FP
instructions. See the following flow.

D-5

Floating-Point Instruction Timing

J - l l FPJ11

Store dass instruction is prefetched.
This occurs during previous instruction
execution

Instruction Decode
Prefetch next instruction

PRDC SYNC

Address Calculation FPJ11 starts execution

INPR FPJ11 places operands in output buffer and sets FPA
Argument Transfer

J-ll waits during first write if FPA-RDY
not asserted

J-ll completes argument transfer

OUTR

Decode next instruction

RDY

D-6

